Prediction of Saturated Vapor Pressures Using Non-linear Equations and Artificial Neural Network Approach
-
8479
Downloads
-
7656
Views
Authors
Mehrdad Honarmand
- Department of Mechanics, Tiran Branches, Islamic Azad University, Isfahan, Iran.
Ehsan Sanjari
- Department of Mechanics, Tiran Branches, Islamic Azad University, Isfahan, Iran.
Hamidreza Badihi
- Department of Mechanics, Tiran Branches, Islamic Azad University, Isfahan, Iran.
Abstract
A new method to estimate vapor pressures for pure compounds using an artificial neural network (ANN) is presented. A reliable database including more than 12000 data point of vapor pressure for testing, training and validation of ANN is used. The designed neural network can predict the vapor pressure using temperature, critical temperature, and acentric factor as input, and reduced pressure as output with 0.211% average absolute relative deviation. 8450 data points for training, 1810 data points for validation, and 1810 data points for testing have been used to the network design and then results compared to data source from NIST Chemistry Web Book. The study shows that the proposed method represents an excellent alternative for the estimation of pure substance vapor pressures and can be used with confidence for any substances.
Share and Cite
ISRP Style
Mehrdad Honarmand, Ehsan Sanjari, Hamidreza Badihi, Prediction of Saturated Vapor Pressures Using Non-linear Equations and Artificial Neural Network Approach, Journal of Mathematics and Computer Science, 8 (2014), no. 4, 343 - 358
AMA Style
Honarmand Mehrdad, Sanjari Ehsan, Badihi Hamidreza, Prediction of Saturated Vapor Pressures Using Non-linear Equations and Artificial Neural Network Approach. J Math Comput SCI-JM. (2014); 8(4):343 - 358
Chicago/Turabian Style
Honarmand, Mehrdad, Sanjari, Ehsan, Badihi, Hamidreza. "Prediction of Saturated Vapor Pressures Using Non-linear Equations and Artificial Neural Network Approach." Journal of Mathematics and Computer Science, 8, no. 4 (2014): 343 - 358
Keywords
- Vapor pressure
- ANN
- neural network
- correlation
- non-linear
MSC
References
-
[1]
J. V. Sengers, R. F. Kayser, C. J. Peters, H. J. White, Equations of state for fluids and fluids mixtures, Elsevier, Amsterdam , The Netherlands (2000)
-
[2]
O. Redlich, J. N. S. Kwong, Chemical Reviews, , 44 (1949), 233–244.
-
[3]
G. Soave , Chemical Engineering Science, , 72 (1972), 1197–1203.
-
[4]
D. Y. Peng, D. B. Robinson , , Ind. Eng. Chem. Fund. , 15 (1976), 59–64.
-
[5]
S. Velasco, F. L. Roman, J. A. White, A. Mulero, J. Chem , , Thermodynamics, 40 (2008), 789–797.
-
[6]
E. Sanjari, M. Honarmand, H. Badihi, A. Ghaheri , , Int. J. Refrigeration , 36 (2013), 1327-1332.
-
[7]
E. Sanjari, M. Honarmand, N. Afshar, R. S. Esfahani , , Thermochimica Acta, 556 (2013), 30-33.
-
[8]
K. Mejbri, A. Bellagi, , Thermochimica Acta. , 436 (2005), 140–149.
-
[9]
J. Lielmezs, K. G. Astley, J. A. McEvoy, , Thermochimica Acta. , 52 (1982), 9-18.
-
[10]
F. L. Figueira, L. Lugo, C. Olivera-Fuentes, , Fluid Phase Equilibria. , 259 (2007), 105–115.
-
[11]
L. A. Forero, J. A. Velásquez, , J. Chem. Eng. Data., 55 (2010), 5094–5100.
-
[12]
M. Aznar, A. Silva-Telles, J. O. Valderrama, , Chem. Eng. Comm. , 190 (2003), 1411–1426.
-
[13]
E. Voutsas, M. Lampadariou, K. Magoulas, D. Tassios, , Fluid Phase Equilibria., 198 (2002), 81–93.
-
[14]
W. Wagner, , Cryogenics, 13 (1973), 470–482.
-
[15]
C. Antoine, , Comptes Rendus, 107 (1888), 681–836.
-
[16]
R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill (1987)
-
[17]
B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The Properties of Gases and Liquids, 5th ed, McGraw-Hill (2001)
-
[18]
E. W. Lemmon, A. R. Goodwin , , J. Phys. Chem. Ref. Data. , 29 (2000), 1–39.
-
[19]
S. N. Sivanandam, S. Sumathi, S. N. Deepa, Introduction to Neural Networks Using Matlab 6.0, McGraw-Hill Publishing, New Delhi (2006)
-
[20]
A. R. Moghadasi, F. Parvizian, S. M. Hosseini, A. R. Fazlali, , Braz. J. Chem. Eng. , 26 (2009), 199-206.
-
[21]
A. A. Rohani, G. Pazuki, H. A. Najafabadi, S. Seyfi, M. Vossoughi , , Exp. Sys. Appl. , 38 (2011), 1738–1747.
-
[22]
J. A. Lazzús, , Thermochimica Acta, 489 (2009), 53–62.
-
[23]
P. Gandhidasan, M. A. Mohandes, , Appl. Therm. Eng. , 28 (2008), 126–135.
-
[24]
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, p. 20899, http://webbook.nist.gov. , Gaithersburg MD ()
-
[25]
B. I. Lee, M. G. Kesler, , AlChE Journal, 21 (1975), 510-527.
-
[26]
M. Gude, A. S. Teja, , J. Chem. Eng. Data. , 40 (1995), 1025–1036.
-
[27]
C. Tsonopoulos, D. Ambrose, , J. Chem. Eng. Data., 40 (1995), 547–558.
-
[28]
K. N. Marsh, A. Abramson, D. Ambrose, D. W. Morton, E. Nikitin, C. Tsonopoulos, C. L. Young, , J. Chem. Eng. Data. , 52 (2007), 1509–1538.
-
[29]
L. Riedel, , Chem. Ing. Tech. , 26 (1954), 679-683.
-
[30]
L. A. Forero, J. A. Velásquez, , J. Chem. Thermodynamics, 43 (2011), 1235–1251.
-
[31]
A. Sencan, S. A. Kalogirou, , Energy. Conv. Man., 46 (2005), 2405–2418.
-
[32]
E. Sanjari, E. Nemati Lay, , J. Nat. Gas. Sci. Eng. , 9 (2012), 220-226.
-
[33]
R. Eslamloueyan, M. H. Khademi, , Int. J. Therm. Sci. , 48 (2009), 1094–1101.
-
[34]
H. Esen, M. Inalli, , Exp. Sys. Appl. , 36 (2009), 10229-10238.
-
[35]
E. Nemati Lay, M. Peymani, E. Sanjari, , World Academy of Science, Engineering and Technology., 67 (2012), 340-346.