A Note on Generalization of Classical Jensens Inequality
-
3455
Downloads
-
4792
Views
Authors
P. O. Olanipekun
- Departmentof Mathematics, Universityof Lagos, Yaba-Nigeria.
A. Mogbademu
- Departmentof Mathematics, Universityof Lagos, Yaba-Nigeria.
Abstract
In this note, we prove a new generalisation of the Jensen’s inequality by using a Riemann-Stieltjes integrable function and convex functions under a mild condition. An example was given to support the claims of this paper.
Share and Cite
ISRP Style
P. O. Olanipekun, A. Mogbademu, A Note on Generalization of Classical Jensens Inequality, Journal of Mathematics and Computer Science, 13 (2014), no. 1, 68-70
AMA Style
Olanipekun P. O., Mogbademu A., A Note on Generalization of Classical Jensens Inequality. J Math Comput SCI-JM. (2014); 13(1):68-70
Chicago/Turabian Style
Olanipekun, P. O., Mogbademu, A.. "A Note on Generalization of Classical Jensens Inequality." Journal of Mathematics and Computer Science, 13, no. 1 (2014): 68-70
Keywords
- Convex functions
- Jensen’s inequality.
MSC
References
-
[1]
H. ASNAASHARI , Some remarks on convexity of Chebysev sets, The Journal of Mathematics and Computer Science, 1 (2010), 102-106.
-
[2]
H. FINBARR, A note on the Mean Value Theorem, https://cms.math.ca/crux/v22/n7page , (), 290-293.
-
[3]
R. Kargar, A. Bilavi, S. Abdolahi, S. Maroufi, A class of Multivalent analytic functions defined by a new linear operator, Journal of Mathematics and Computer Science, 8 (2014), 236-334.
-
[4]
D. S. MITRINOVIC, J. E. PECARIC, A. M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, London (1993)
-
[5]
H. L. ROYDEN, P. M. FITZPATRICK, Real Analysis, Fourth Edition, PHI- Learning Private Limited, New Delhi (2011)