Common Fixed Point Results for R - Weakly Commuting Mappings in Generalized Fuzzy Metric Spaces
-
2749
Downloads
-
4583
Views
Authors
R. Muthuraj
- PG and Research Department of Mathematics, H.H.The Rajah’s College, Pudukkottai – 622 001, India.
R. Pandiselvi
- Department of Mathematics, The Madura college, Madurai – 625 011, India.
S. Manro
- School of Mathematics and Computer Applications, Thapar University, Patiala, India.
Abstract
In this paper, we prove two common fixed point theorems involving R-weakly commuting mappings in the context of \(M\)-fuzzy metric spaces. Our results generalizes the earlier results of Pant [8], Vasuki [15] and Som [13,14] in fuzzy metric spaces.
Share and Cite
ISRP Style
R. Muthuraj, R. Pandiselvi, S. Manro, Common Fixed Point Results for R - Weakly Commuting Mappings in Generalized Fuzzy Metric Spaces, Journal of Mathematics and Computer Science, 9 (2014), no. 2, 89-102
AMA Style
Muthuraj R., Pandiselvi R., Manro S., Common Fixed Point Results for R - Weakly Commuting Mappings in Generalized Fuzzy Metric Spaces. J Math Comput SCI-JM. (2014); 9(2):89-102
Chicago/Turabian Style
Muthuraj, R., Pandiselvi, R., Manro, S.. "Common Fixed Point Results for R - Weakly Commuting Mappings in Generalized Fuzzy Metric Spaces." Journal of Mathematics and Computer Science, 9, no. 2 (2014): 89-102
Keywords
- \(M\)-fuzzy metric spaces
- \(R\)-Weakly Commuting mappings.
MSC
References
-
[1]
Amalendu Choudhury, T. Som , Few common fixed point results for weakly commuting mappings, Journal of mathematics and computer Science , 6 (2013), 27-35
-
[2]
E. Feizi, T. Hosseini, J-Type mappings and fixed point theorems in menger spaces , Journal of mathematics and computer science, 8 (2014), 245-250
-
[3]
M. Grabee, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
-
[4]
V. Gregori, A. Sepena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252.
-
[5]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
-
[6]
J. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica II, (1975), 330-334.
-
[7]
E. Movahednia, S. Eshtehar, Fixed Point and Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation in Menger Probabilistic Normed Spaces, The Journal of Mathematics and Computer Science, 5 (2012), 22-27
-
[8]
R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl., 188(2) (1994), 436-440.
-
[9]
B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314- 334.
-
[10]
S. Sedghi, N. Shobe , Fixed point theorem is \(M\)-fuzzy metric spaces with property (E), Advances in Fuzzy Mathematics, 1(1) (2006), 55-65.
-
[11]
S. Sedghi, N. Shobe, S. Sedghi, Common fixed point theorems for two mappings in D*- metric spaces, Journal of Prime Research in Mathematics, 4 (2008), 132-142.
-
[12]
H. Shojaei , K. Banaei, N. Shojaei, Fixed Point Theorems for Weakly Compatible Maps Under E.A. Property in Fuzzy 2-Metric Spaces, Journal of mathematics and computer Science , 6 (2013), 118-128.
-
[13]
T. Som, Some fixed point theorems on metric and Banach spaces, Indian J. Pure Appl. Math., 16(6) (1985), 575-585.
-
[14]
T. Som, Some results on common fixed point in fuzzy metric spaces, Soochow J. Math., 33(4) (2007), 553-561.
-
[15]
R. Vasuki, Common Fixed Points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30(4) (1999), 419-423.
-
[16]
T. Veerapandi, M. Jeyaraman, J. P. R. Paul, Some fixed point and coincident point theorem in generalized \(M\)-fuzzy metric space, Int. Journal of Math. Analysis, 3 (2009), 627-635.
-
[17]
Virendra Singh Chouhan, A. Ganguly, Convergence of Common Fixed Point Theorems in Fuzzy Metric Spaces, Journal of mathematics and computer science , 8 (2014), 93-97
-
[18]
L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.