Statistical Convergence of Double Sequence in Paranormed Spaces
-
2737
Downloads
-
3927
Views
Authors
Fatemeh Amouei Arani
- Department of Mathematics, Payamenoor University , P.O. Box.19395-4697, Tehran, Iran.
Madjid Eshaghi Gordji
- Department of Mathematics, Semnan University ,P.O.BOX35195-363, Semnan. Iran.
Soraya Talebi
- Payamenoor University , P.O. Box.19395-4697, Tehran, Iran.
Abstract
In this article we define and investigate statistical convergence and Cauchy for double sequences in paranormed spaces. We also obtain a criterion for a double sequence in paranormed spaces to be a statistical Cauchy sequence.
Share and Cite
ISRP Style
Fatemeh Amouei Arani, Madjid Eshaghi Gordji, Soraya Talebi, Statistical Convergence of Double Sequence in Paranormed Spaces, Journal of Mathematics and Computer Science, 10 (2014), no. 1, 47-53
AMA Style
Arani Fatemeh Amouei, Gordji Madjid Eshaghi, Talebi Soraya, Statistical Convergence of Double Sequence in Paranormed Spaces. J Math Comput SCI-JM. (2014); 10(1):47-53
Chicago/Turabian Style
Arani, Fatemeh Amouei, Gordji, Madjid Eshaghi, Talebi, Soraya. "Statistical Convergence of Double Sequence in Paranormed Spaces." Journal of Mathematics and Computer Science, 10, no. 1 (2014): 47-53
Keywords
- statistical convergence
- g-statistical convergence
- double sequences
- paranormed spaces.
MSC
References
-
[1]
A. Alotaibi, A . M. Alroqi , Statistical convergence in a paranormed space , journal of inequalities and applications., 39 (2012)
-
[2]
R. C. Buck, Generalized asymptotic density, Amer.J.Math., (1953), 335-336.
-
[3]
J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis , 8 (1988), 47-63.
-
[4]
H. Fast , Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
-
[5]
J. A. Fridy, On statistical convergence, Analysis, 105 (1985), 301-313.
-
[6]
O. Hadzic, Some properties of meaure of noncompactness in paranormed spaces, American Mathematical Society, 102 (4) (1988), 672-680.
-
[7]
E. Kolk, The statistical convergence in Banach spaces, Tartu 𝑈 I.Toimetsed., 928 (1991), 41-52.
-
[8]
C. G. Lascarides, I. J. Maddox, Matrix transformation between some classes of sequences, Proc.Camb.Phil.Soc., 68 (1970), 99-104.
-
[9]
I. J. Maddox, A. M. L. Willey, Continuous operators on paranormed space and matrix transformation, Pacific journal of mathematics , (1974)
-
[10]
I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc.Camb. Phil. Soc., 64 (1968), 335-340.
-
[11]
I. J. Maddox , Some properties of paranormed sequence spaces, J. London Math., Soc, 2 (1969), 316-322.
-
[12]
F. Moricz, Tauberian theorems for Cesàro summable double sequences, Studia Math., 110 (1994), 83-96.
-
[13]
M. Mursaleen, H. Osama, H. Edely, Statistical convergence of double sequences, J. Math. Anal.Appl., 288 (2003), 223-231.
-
[14]
M. Mursaleen, Elements of Metric Spaces, Anamaya Publ, New Delhi (2005)
-
[15]
H. Nakano , Modular sequence spaces, Proc. Japan Acad., 27 (1951), 508-512.
-
[16]
H. Osama, H. Edely, Mursaleen, On statistical A-summability, Math Comput Model, 49 (2009), 672-680.
-
[17]
C. Park, D. Y. Shin, Functional equations in paranormed spaces, Advances in difference equations, 123 (2012)
-
[18]
A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
-
[19]
S. Simons, The sequence spaces \(l(\rho_\vartheta)\) and \(m(\rho_\vartheta)\), Proc.London Math.Soc., 15 (1965), 422-426.
-
[20]
H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1953), 335-346.
-
[21]
B. C. Tripaty, B. Sarma, Vector valued paranormed statistically convergent double sequence spaces, Mathematica Slovaca, 57 (2) (2007), 179-188.