Connections of Linear Operators Defined by Analytic Functions with \(Q_p\) Spaces
-
2580
Downloads
-
4533
Views
Authors
Z. Orouji
- Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
R. Aghalary
- Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
A. Ebadian
- Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
Abstract
This paper is concerned mainly with the linear operators \(I_f^{\gamma , \alpha}\) and \(J_f^{\gamma , \alpha}\) of analytic function \(f\).The norm of \(I_f^{\gamma , \alpha}\) and \(J_f^{\gamma , \alpha}\) on some analytic function spaces is computed in this paper. We study the relation between \(I_f^{\gamma , \alpha}\) and \(J_f^{\gamma , \alpha}\) operators, the \(\beta(\lambda)\) spaces and \(Q_p\) spaces \((0<p<\infty)\).
Share and Cite
ISRP Style
Z. Orouji, R. Aghalary, A. Ebadian, Connections of Linear Operators Defined by Analytic Functions with \(Q_p\) Spaces, Journal of Mathematics and Computer Science, 10 (2014), no. 1, 78-84
AMA Style
Orouji Z., Aghalary R., Ebadian A., Connections of Linear Operators Defined by Analytic Functions with \(Q_p\) Spaces. J Math Comput SCI-JM. (2014); 10(1):78-84
Chicago/Turabian Style
Orouji, Z., Aghalary, R., Ebadian, A.. "Connections of Linear Operators Defined by Analytic Functions with \(Q_p\) Spaces." Journal of Mathematics and Computer Science, 10, no. 1 (2014): 78-84
Keywords
- Integral operator
- \(Q_p\) spaces
- Pre-Schwarzian derivative.
MSC
References
-
[1]
R. Aulaskari, P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and Its Applications, 305 (1994), 136-146.
-
[2]
R. Aulaskari, P. Lappan, J. Xiao, R. Zhao, On 𝛼-Bloch spaces and multipliers of Dirichlet spaces, J. Math.Anal.Appl. , 209(1) (1997), 103-121.
-
[3]
J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte funktionen, J. reine Angew. Math., 255 (1972), 23-43.
-
[4]
P. L. Duren, Theory of \(H^p\) Spaces, Academic Press, New York, London(1970), Reprint:Dover, Mineola, New York (2000)
-
[5]
B. J. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, Springer, Revised first edition. , Berlin (2007)
-
[6]
D. Girela, Analytic functions of bounded mean oscillation, In: Aulaskari, R. (ed.) Complex Function Spaces, Mekrijarvi 1997. Univ. Joensuu Dept. Math. Rep. Ser., 4 (2001), 61-170.
-
[7]
C. Hammond , The norm of a composition operator with linear symbol acting on the Dirichlet space, J. Math. Anal. Appl. , 303 (2005), 499-508.
-
[8]
Y. C. Kim, T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math., 32 (2002), 179-200.
-
[9]
Y. C. Kim, T. Sugawa , Uniformly locally univalent functions and Hardy spaces, J. Math. Anal. Appl. , 353 (2009), 61-67.
-
[10]
F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415-426.
-
[11]
H. Li, S. Li , Norm of an integral operators on some analytic function spaces on the unit disk , Journal of Inequalities and Applications, 342 (2013), 1-7.
-
[12]
S. Li, S. Stevic, Integral type operators from mixed-norm spaces to 𝛼-Bloch spaces, Integral Transforms Spec. Funct. , 18(7) (2007), 485-493.
-
[13]
Ch. Pommerenke, Schlichtefunktionen und analytische funktionen von Bechranktermittlereroszillation, Comment. Math. Helv., 52 (1977), 591-602.
-
[14]
D. Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University. Blacksburg, Virginia (1978)
-
[15]
S. Stevic, On an integral operator between Bloch-type spaces on the unit ball, Bull. Sci. Math. , 134 (2010), 329-339.
-
[16]
J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, vol. 1767. Springer, Berlin (2001)
-
[17]
J. Xiao, Ceometric Q Functions, Frontiers in Mathematics, Birkhauser, Basel (2006)
-
[18]
K. Zhu, Operator theory in function spaces, Marcel Dekker, New York (1990). Reprint: Math. Surveys and Monographs, vol. 138. American Mathematical Society, Providence (2007)
-
[19]
K. Zhu, Bloch type spaces of analytic functions, Rocky Mt. J. Math., 23 (1993), 1143-1177.