# Rational Laguerre Functions and Their Applications

Volume 14, Issue 2, pp 124-142
• 1193 Views

### Authors

A. Aminataei - Department of Applied Mathematics, Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran S. Ahmadi Asl - Department of Mathematics, Birjand University, Birjand, Iran Z. Kalatehbojdi - Department of Mathematics, Birjand University, Birjand, Iran

### Abstract

In this work, we introduce a new class of rational basis functions defined on $[a,b)$ and based on mapping the Laguerre polynomials on the bounded domain $[a,b)$ . By using these rational functions as basic functions, we implement spectral methods for numerical solutions of operator equations. Also the quadrature formulae and operational matrices (derivative, integral and product) with respect to these basis functions are obtained. We show that using quadrature formulae based on rational Laguerre functions give us very good results for numerical integration of rational functions and also implementing spectral methods based on these basis functions for solving stiff systems of ordinary differential equationsgive us suitable results. The details of the convergence rates of these basis functions for the solutions of operator equations are carried out, both theoretically and computationally and the error analysis is presented in $L^2 [a,b)$ space norm.

### Keywords

• Rational Laguerre functions
• Spectral methods
• Stiff system
• Hilbert space.

•  51B15
•  65N35
•  35J05

### References

• [1] W. Gautschi, Orthogonal Polynomials (Computation and Approximation), Oxford University Press, (2004)

• [2] C. F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press, (2001)

• [3] F. Marcellan, W. V. Assche, Orthogonal Polynomials and Special Functions (a Computation and Applications), Springer-Verlag Berlin Heidelberg, (2006)

• [4] R. Askey, Orthogonal Polynomials and Special Functions, SIAM-CBMS , Philadelphia (1975)

• [5] D. Gottlieb, S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM-CBMS, Philadelphia (1977)

• [6] J. P. Boyd, Chebyshev, Fourier Spectral Methods, Dover Publications, Inc, New York (2000)

• [7] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, (2006)

• [8] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Method in Fluid Dynamics, Prentice Hall, Englewood Cliffs, NJ (1984)

• [9] L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, PA (2000)

• [10] J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Springer, (2009)

• [11] G. Ben-yu, The State of Art in Spectral Methods, Hong kong University, (1996)

• [12] J. Shen, T. Tang, Li-Lian Wang, Spectral Methods Algorithms, Analysis and Applications, Springer (2011)

• [13] J. Shen, Li-Lian Wang, Some Recent Advances on Spectral Methods for Un-bounded Domains, J. Commun. comput. Phys, 5 (2009), 195-241.

• [14] D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, firsted, Cambridge University (2007)

• [15] A. Imani, A. Aminataei, Collocation method via Jacobi polynomials for solving nonlinear ordinary differential equations, Int. J. Math. Math. Sci., Article ID 673085 , (2011), 11 pages

• [16] K. Parand, M. Shahini, Rational Chebyshev pseudo spectral approach for solving Thomas Fermi equation, Physics Letters A, 373 (2009), 210-213.

• [17] K. Parand, M. Shahini, M. Dehghan, Rational Legendre pseudo spectral approach for solving nonlinear differential equations of Lane Emden type, J. Computational Physics, 228 (2009), 8830-8840.

• [18] J. P. Boyd, Rational Chebyshev spectral methods for unbounded solutions on an infinite interval using polynomial-growth special basis functions, Computers and Mathematics with Applications, 41 (2001), 1293-1315.

• [19] M. R. Eslahchi, M. Dehghan, Application of Taylor series in obtaining the orthogonal operational matrix, Computers and Mathematics with Applications, 61 (2011), 2596-2604.

• [20] M. Razzaghi, Y. Ordokhani, Solution of nonlinear Volterra Hammerstein integral equations via rationalized Haar functions, Math. Probl. Eng, 7 (2001), 205-219.

• [21] F. Khellat, S. A. Yousefi, The linear Legendre wavelets operational matrix of integration and its application, J. Franklin Inst, 343 (2006), 181-190.

• [22] R. Burden, J. D. Faires, Numerical Analysis, Fifth Edition, PWS Publishing Company, Boston (1993)

• [23] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge University Press , Cambridge (1988)

• [24] E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math, 111 (1999), 93-111.

• [25] G. Sottas, Rational Runge-Kutta methods are not suitable for stiff systems of ODEs, J. Comput. Appl. Math, 10 (1984), 169-174.

• [26] D. L. Preiser, A Class of nonlinear multistep A-stable numerical methods for solving stiff differential equations, J. Comput. Mathematics. Appl, 4 (1978), 43-51.

• [27] Z. Jackiewicz, Implementation of DIMSIMs for stiff differential systems, Applied Numerical Mathematics, 42 (2002), 251-267.

• [28] J. L. Blue, H. K. Gummel, Rational approximations to matrix exponential for systems of stiff differential equations, J. Compu. Phys, 51 (1970), 70-83.

• [29] S. J. Liao, Notes on the homotopy analysis method: some definitions and theorems, Common Nonlinear Sci Numer Simulat, 14 (2009), 983-997

• [30] J. H. He, Variational iteration method for delay differential equations, Common. Nonlinear. Sci. Numer. Simul, 2 (1997), 235-236.

• [31] J. H. He, Approximate solution of nonlinear differential equations with convolution product non-linearities, Comput. Methods. Appl. Mech. Engrg, 167 (1998), 69-73.

• [32] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput, 114 (2000), 115-123.

• [33] N. Guzel, M. Bayram, On the numerical solution of stiff systems, J. Appl. Math. And Comput, 170 (2005), 230-236.