A Grüss type inequality for two weighted functions
-
2316
Downloads
-
3967
Views
Authors
Junesang Choi
- Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea
Abstract
Since Grüss in 1935 presented the so-called Grüss type inequality,
a variety of its variants and generalizations have been investigated.
Among those things, Dragomir in 2000 established
a Grüss type inequality for a functional with a weighted function.
In this sequel, we aim to present a Grüss type inequality for a functional with two weighted functions.
We also apply our main result to give some other inequalities.
Share and Cite
ISRP Style
Junesang Choi, A Grüss type inequality for two weighted functions, Journal of Mathematics and Computer Science, 18 (2018), no. 1, 87--93
AMA Style
Choi Junesang, A Grüss type inequality for two weighted functions. J Math Comput SCI-JM. (2018); 18(1):87--93
Chicago/Turabian Style
Choi, Junesang. "A Grüss type inequality for two weighted functions." Journal of Mathematics and Computer Science, 18, no. 1 (2018): 87--93
Keywords
- Grüss type inequality and its generalization
- Chebyshev inequality
- Grüss type inequality with a weighted function
- Grüss type inequality with two weighted functions
- synchronous functions
MSC
References
-
[1]
P. Agarwal, J.-S. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators , Bull. Korean Math. Soc., 53 (2016), 181–193
-
[2]
P. L. Čebyšev, Sur les expressions approximatives des integrales definies par les autres prises entre les même limites , Proc. Math. Soc. Charkov, 2 (1882), 93–98
-
[3]
J.-S. Choi, P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstr. Appl. Anal., 2014 (2014), 11 pages
-
[4]
Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497
-
[5]
Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev’s functional involving a Riemann- Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44
-
[6]
R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192.
-
[7]
S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31 (2000), 397–415
-
[8]
G. Grüss , Über das Maximum des absoluten Betrages von \(\frac{1}{ b-a} \int^a_b f (x)g (x) dx - \frac{1}{ (b-a)^2} \int^a_b f (x) dx \int^a_b g (x) dx\), (German) Math. Z., 39 (1935), 215–226
-
[9]
J.-C. Kuang, Changyong budengshi , (Chinese) [[Applied inequalities]] Second edition, With a preface by Shan Zhen Lu, Hunan Jiaoyu Chubanshe, Changsha (2004)
-
[10]
D. S. Mitrinović, Analytic inequalities, In cooperation with P. M. Vasić , Die Grundlehren der mathematischen Wissenschaften, Band 165 Springer-Verlag, New York-Berlin (1970)
-
[11]
D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), Kluwer Academic Publishers Group , Dordrecht (1993)
-
[12]
A. M. Ostrowski, On an integral inequality, Aequationes Math., 4 (1970), 358–373
-
[13]
E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34
-
[14]
M. Tomar, S. Mubeen, J.-S. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl., 2016 (2016), 14 pages