Improvement of the Multiquadric Quasi-interpolation \(L_{w_2} \)
-
3105
Downloads
-
4387
Views
Authors
Maryam Sarboland
- Faculty of Mathematics, Department of Applied Mathematics, K. N. Toosi University of Technology, P.O. Box: 15418-49611, Tehran, Iran.
Azim Aminataei
- Faculty of Mathematics, Department of Applied Mathematics, K. N. Toosi University of Technology, P.O. Box: 15418-49611, Tehran, Iran.
Abstract
In this paper, we improve the multiquadric (MQ) quasi-interpolation operator \(L_{w_2 }\). The operator \(L_{w_2 }\) is based on inverse multiquadric radial basis function (IMQ-RBF) interpolation, and Wu and Schaback's MQ quasi-interpolation operator \(L_D\). In definition process of the quasi-interpolation \(L_{w_2 }\), the second derivative of function is used that approximated by center finite difference. In this paper, we use compact finite difference for approximation of the second derivative and increase accuracy of quasi-interpolation \(L_{w_2 }\). Numerical experiments demonstrate that the proposed MQ quasi-interpolation scheme is valid.
Share and Cite
ISRP Style
Maryam Sarboland, Azim Aminataei, Improvement of the Multiquadric Quasi-interpolation \(L_{w_2} \), Journal of Mathematics and Computer Science, 11 (2014), no. 1, 13-21
AMA Style
Sarboland Maryam, Aminataei Azim, Improvement of the Multiquadric Quasi-interpolation \(L_{w_2} \). J Math Comput SCI-JM. (2014); 11(1):13-21
Chicago/Turabian Style
Sarboland, Maryam, Aminataei, Azim. "Improvement of the Multiquadric Quasi-interpolation \(L_{w_2} \)." Journal of Mathematics and Computer Science, 11, no. 1 (2014): 13-21
Keywords
- Radial basis function
- Multiquadric quasi-interpolation
- Inverse multiquadric
- Compact finite difference.
MSC
References
-
[1]
I. Barrodale, D. Skea, M. Berkley, R. Kuwahara, P. Poeckert, Warping digital images using thin-plate splines, Pattern Recognition , 26 (1993), 375-376.
-
[2]
R. K. Beatson, M. J. D. Powell, Univariate multiquadric approximation: quasi-interpolation to scattered data, Constr. Approx. , 8 (1992), 275-288.
-
[3]
J. Biazar, M. Hosami, Two efficient approaches based on radial basis functions to nonlinear time-dependent partial differential equations, J. Math. Computer Sci. , 13 (2014), 1–11.
-
[4]
J. C. Carr, W. R. Fright, R. K. Beatson, Surface interpolation with radial basis functions for medical imaging, IEEE Trans. Medical Imaging , 16 (1997), 96–107.
-
[5]
Y. L. Chan, L. H. Shen, C. T. Wu, D. L. Young, A novel upwind-based local radial basis function differential quadrature method for convection-dominated flows, Computer & Fluids , 89 (2014), 157–166.
-
[6]
R. H. Chen, Z. M. Wu, Solving partial differential equation by using multiquadric quasi-interpolation, Appl. Math. Comput. , 186 (2007), 1502–1510.
-
[7]
R. H. Chen, Z. M. Wu, Solving hyperbolic conservation laws using multiquadric quasi-interpolation, Numer. Methods Partial Differential Equations , 22 (2006), 776–796.
-
[8]
B. H. Chovitz, Geodetic theory, Rev. geophys. Space Phys. , 13 (1975), 243–245.
-
[9]
M. Dehghan, A. Shokri , A numerical method for solution of the two-dimensional Sine-Gordon equation using the radial basis functions, Mathematics and Computers Simulation, 79 (2008), 700–715.
-
[10]
M. Dehghan, A. Nikpour, Numerical solution of the system of second-order boundary value problems using the local radial basis function based differential quadrature collocation method, Appl. Math. Modelling, 37 (2013), 8578–8599.
-
[11]
M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math. , 230 (2009), 400–410.
-
[12]
M. Dehghan, A. Shokri, A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dyn., 50 (2007), 111–120.
-
[13]
F. Gao, Ch. Chi , Numerical solution of nonlinear Burgers' equation using high accuracy multiquadric quasi-interpolation, Appl. Math. Comput. , 229 (2014), 414–421.
-
[14]
R. L. Hardy, S. A. Nelson, A multiquadric biharmonic representation and approximation of disturbing potential, Geophys. Res. Lett., 13 (1986), 18–21.
-
[15]
R. L. Hardy, Theory and applications of the multiquadric biharmonic method, Comput. Math. Appl. , 19 (1990), 163–208.
-
[16]
Y. C. Hon, X. Z. Mao, An efficient numerical scheme for Burgers' equation, Appl. Math. Comput., 95 (1998), 37–50.
-
[17]
Y. C. Hon, Z. M. Wu, A quasi-interpolation method for solving stiff ordinary differential equations, Internat. J. Numer. Methods Eng. , 48 (2000), 1187–1197.
-
[18]
J. R. Jancaitis, J. L. Junkins, Modeling irregular surfaces , Photogramm. Engng. , 39 (1973), 413–420.
-
[19]
Z. W. Jiang, R. H. Wang, C. G. Zhu, M. Xu, High accuracy multiquadric quasi-interpolation, Appl. Math. Modelling , 35 (2011), 2185–2195.
-
[20]
Z. W. Jiang, R. H. Wang, Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation, Appl. Math. comput. , 218 (2012), 7711–7716.
-
[21]
E. J. Kansa, Multiquadric-a scattered data approximation scheme with applications to computational fluid dynamics I, Comput. Math. Appl. , 19 (1990), 127–145.
-
[22]
E. J. Kansa , Multiquadric-a scattered data approximation scheme with applications to computational fluid dynamics II , Comput. Math. Appl. , 19 (1990), 147–161.
-
[23]
M. Kumar, N. Yadav, Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey, Comput. Math. With Applications, 62 (2011), 3796–3811.
-
[24]
W. R. Madych, S. A. Nelson, Multivariate interpolation and conditionally positive defnite functions, Math. Comp., 54 (1990), 211–230.
-
[25]
K. Parand, S. Abbasbandy, S. Kazem, J. A. Rad, A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Communications in Nonlinear Science and Numerical Simulation , 16 (2011), 4250–4258.
-
[26]
D. T. Sandwell, Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data, Geophys. Res. Lett. , 14 (1987), 139–142.
-
[27]
Z. M. Wu, Dynamically knots setting in meshless method for solving time dependent propagations equation, Comput.Methods Appl. Mech. Eng. , 193 (2004), 1221–1229.
-
[28]
Z. M. Wu, Dynamically knot and shape parameter setting for simulating shock wave by using multiquadric quasi-interpolation, Engineering Analysis with Boundary Elements, 29 (2005), 354–358.
-
[29]
Z. M. Wu, R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi- interpolation, Acta. Math. Appl. Sin. Engl. Ser., 10 (1994), 441–446.
-
[30]
M. L. Xiao, R. H. Wang, C. H. Zhu , Applying multiquadric quasi-interpolation to solve KdV equation, Mathematical Research Exposition , 31 (2011), 191–201.