A New Analytical Method for Solving Hamilton-jacobi-bellman Equation
-
2942
Downloads
-
4010
Views
Authors
M. Matinfar
- Department of Mathematics, Faculty of Science, University of Mazandaran, Babolsar, Iran.
M. Saeidy
- Department of Mathematics, Faculty of Science, University of Mazandaran, Babolsar, Iran.
Abstract
In this paper, we apply a modification of variational iteration method using He's polynomials for a class of nonlinear optimal control problems which are converted to the Hamilton-Jacobi-Bellman equations (HJB) and present a convergence theorem of the method. The proposed modification is made by introducing He's polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for using in these problems. Some examples are given to demonstrate the simplicity and efficiency of the proposed method.
Share and Cite
ISRP Style
M. Matinfar, M. Saeidy, A New Analytical Method for Solving Hamilton-jacobi-bellman Equation, Journal of Mathematics and Computer Science, 11 (2014), no. 4, 252 - 263
AMA Style
Matinfar M., Saeidy M., A New Analytical Method for Solving Hamilton-jacobi-bellman Equation. J Math Comput SCI-JM. (2014); 11(4):252 - 263
Chicago/Turabian Style
Matinfar, M., Saeidy, M.. "A New Analytical Method for Solving Hamilton-jacobi-bellman Equation." Journal of Mathematics and Computer Science, 11, no. 4 (2014): 252 - 263
Keywords
- Optimal control problem
- Homotopy perturbation method
- Variational iteration method
- Numerical solution.
MSC
References
-
[1]
M. Itik, M. U. Salamci, S. P. Banksa, Optimal control of drug therapy in cancer treatment, Nonlinear Analysis, 71(12) (2009), 1473-1486.
-
[2]
W. L. Garrard, J. M. Jordan , Design of nonlinear automatic flight control systems , Automatica, 13(5) (1977), 497-505.
-
[3]
S. Wei, M. Zefran, R. A. DeCarlo, Optimal control of robotic system with logical constraints: application to UAV path planning, In Proceeding(s) of the IEEE International Conference on Robotic and Automation, Pasadena, CA, USA (2008)
-
[4]
O. Stryk, R. Bulirsch, Direct and indirect methods for trajectory optimization, Annals of Operations Research, 37(1-4) (1992), 357-373.
-
[5]
C. J. Goh, K. L. Teo, Control parameterization: a unified approach to optimal control problem with general constraints, Automatica, 24(1) (1988), 3-18.
-
[6]
R. Bellman, On the theory of dynamic programming, Proceedings of the National Academy of Sciences, USA, 38(8) (1952), 716-719.
-
[7]
L. S. Pontryagin, Optimal control processes, Uspekhi Matematicheskikh Nauk, 14 (1959), 3-20.
-
[8]
R. W. Beard, G. N. Saridis, J. T. Wen, Galerkin approximations of the generalized Hamilton- Jacobi-Bellman equation, Automatica, 33(12) (1997), 2159-2177.
-
[9]
G. Y. Tang, Suboptimal control for nonlinear systems: a successive approximation approach, System and Control Letters, 54(5) (2005), 429-434.
-
[10]
G. Y. Tang, H. P. Qu, Y. M. Gao, Sensitivity approach of suboptimal control for a class of nonlinear systems, Journal of Ocean University of Qingdao, 32(4) (2002), 615-620.
-
[11]
M. A. Abdou, A. A. Soliman, Variational iteration method for solving Burger's and coupled Burger's equations, J. Comput. Appl. Math., 181 (2005), 245-251.
-
[12]
M. R. Caputo, Foundations of dynamic economic analysis: optimal control theory and applications, Cambridge University press, (2005)
-
[13]
A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Solitons Fractals, 39 (2009), 1486-1492.
-
[14]
A. Ghorbani, J. Saberi-Nadjafi, He's homotopy perturbation method for calculating adomian polynomials, Int. J. oF Non. Sci. and Num. Simul., 8 (2007), 229-232.
-
[15]
J. H. He, Homotopy perturbation technique, Comput. Math. in Appl. Mech. and Eng., 178(3-4) (1999), 257-62.
-
[16]
J. H. He, Variational iteration method:Some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), 3-7.
-
[17]
M. Inokuti, et al., General use of the Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford, (1978), 156-162.
-
[18]
S. T. Mohyud-Din, M. A. Noor, KI. Noor, Variational Iteration Method for Burgers' and Coupled Burgers' Equations Using He's Polynomials, Zeitschrift Fur Naturforschunge Section A-A J. oF Phy. Sci., 65 (2010), 263-267.
-
[19]
M. Matinfar, M. Saeidy, The Homotopy perturbation method for solving higher dimensional initial boundary value problems of variable coefficients, W. J. of Model. and Simu., 5 (2009), 75-83.
-
[20]
A. M. Wazwaz , The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Comput. and Math. with Appl., 54 (2007), 926-932.
-
[21]
A. M. Wazwaz, The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations, J. Comput. Appl. Math., 207 (2007), 18-23.
-
[22]
S. A. Yousefi, M. Dehghan, A. Lotfi, Finding the optimal control of linear systems via He's variational iteration method, International Journal of Computer Mathematics, (2010), 1042-1050.