An Iterative Method for Semigroups of Nonexpansive Mappings
-
2683
Downloads
-
3753
Views
Authors
A. Dianatifar
- Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
F. Golkar
- Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
A. M. Forouzanfar
Abstract
We introduce an iterative method for finding a common fixed point of a semigroup of infinite family of
nonexpansive mappings in Hilbert space, with respect to a sequence of left regular means defined on an
appropriate space of bounded real valued functions of the semigroup. we prove the strong convergence of
the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality
condition for a minimization problem.
Share and Cite
ISRP Style
A. Dianatifar, F. Golkar, A. M. Forouzanfar, An Iterative Method for Semigroups of Nonexpansive Mappings , Journal of Mathematics and Computer Science, 11 (2014), no. 4, 319-329
AMA Style
Dianatifar A., Golkar F., Forouzanfar A. M., An Iterative Method for Semigroups of Nonexpansive Mappings . J Math Comput SCI-JM. (2014); 11(4):319-329
Chicago/Turabian Style
Dianatifar, A., Golkar, F., Forouzanfar, A. M.. "An Iterative Method for Semigroups of Nonexpansive Mappings ." Journal of Mathematics and Computer Science, 11, no. 4 (2014): 319-329
Keywords
- Hilbert space
- Amenable semigroups
- Common fixed point
- Nonexpansive mappings.
MSC
References
-
[1]
A. T. Lau, N. Shioji, W. Takahashi, Existences of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces, J. Funct. Anual. , 161 (1999), 62-75.
-
[2]
G. Marino, H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, j. Math. Anal. Appl., 318 (2006), 43-52.
-
[3]
H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291.
-
[4]
H. Piri, H. Vaezi, Strong convergence of a generalized iterative method for semigroups of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl. , doi:10. 1155/2010/907275. (2010)
-
[5]
K. Shimoji, W. Takahashi , Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387-404.
-
[6]
R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. , 38 (1981), 304-314.
-
[7]
Sh. Banerjee, B. S. Choudhury, Weak and strong convergence theorems of a new iterative process with errors for common fixed points of a finite families of asymptotically nonexpansive mappings in the intermediate sense in Banach spaces, TJMCS, 11 (2014), 79-85.
-
[8]
S. S. Zhang, J. H. W. Lee, C. K. Chan, Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech., 29 (2008), 571-581.
-
[9]
T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. , 305 (2005), 227-239.
-
[10]
W. Takahashi, A nonlinera ergodic theorem for an amenable semigroup of nonexpansive mappings in Hilbert space, Proc. Amer. Math. Soc. , 81 (1981), 253-256.
-
[11]
W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000)
-
[12]
Y. Yao, A general iterative method for a finite family of nonexpansive mappings, Nonlinear Anal. , 66 (2007), 2676-2687.