A Nonlinear Partial Integro-differential Equation Arising in Population Dynamic Via Radial Basis Functions and Theta-method
-
3510
Downloads
-
5151
Views
Authors
M. Aslefallah
- Department of Mathematics, Imam Khomeini International University, Qazvin, Iran.
E. Shivanian
- Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
Abstract
This paper proposes a numerical method to deal with the integro-differential reaction-diffusion equation. In the proposed method, the time variable is eliminated by using finite difference \(\theta\)−method to enjoy the stability condition. The method benefits from collocation radial basis function method, the generallized thin plate splines (GTPS) radial basis functions are used. Therefore, it does not require any struggle to determine shape parameter. The obtained results for some numerical examples reveal that the proposed technique is very effective, convenient and quite accurate to such considered problems.
Share and Cite
ISRP Style
M. Aslefallah, E. Shivanian, A Nonlinear Partial Integro-differential Equation Arising in Population Dynamic Via Radial Basis Functions and Theta-method , Journal of Mathematics and Computer Science, 13 (2014), no. 1, 14-25
AMA Style
Aslefallah M., Shivanian E., A Nonlinear Partial Integro-differential Equation Arising in Population Dynamic Via Radial Basis Functions and Theta-method . J Math Comput SCI-JM. (2014); 13(1):14-25
Chicago/Turabian Style
Aslefallah, M., Shivanian, E.. "A Nonlinear Partial Integro-differential Equation Arising in Population Dynamic Via Radial Basis Functions and Theta-method ." Journal of Mathematics and Computer Science, 13, no. 1 (2014): 14-25
Keywords
- Integro-differential equation
- Radial basis functions
- Kansa method
- Finite differences \(\theta\)-method.
MSC
References
-
[1]
L. Sabatelli, S. Keating, J. Dudley, P. Richmond, Waiting time distributions in financial markets, European Physical Journal B, 27 (2002), 273-275.
-
[2]
R. Schumer, D. A. Benson, M. M. Meerschaert, S. W. Wheatcraft, Eulerian derivation of the fractional advection-dispersion equation, Journal of Contaminant Hydrology, 48 (2001), 69-88.
-
[3]
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)
-
[4]
M. M. Meerschaert, C. Tadjeran, Finite Difference Approximations for two-sided space-fractional partial differential equations, Applied Numerical Mathematics, 56 (2006), 80-90.
-
[5]
S. Samko, A. Kibas, O. Marichev, Fractional Integrals and derivatives: Theory and Applications, Gordon and Breach , London (1993)
-
[6]
MD. Buhmann, Radial basis functions: theory and implementations, Cambridge University Press, (2003)
-
[7]
V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary. Elem, 38 (2014), 31-39.
-
[8]
S. Abbasbandy, H. R. Ghehsareh, I. Hashim, Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function, Eng. Anal. Boundary. Elem. , 36(12) (2012), 1811-1818.
-
[9]
S. Abbasbandy, H. R. Ghehsareh, I. Hashim, A meshfree method for the solution of two-dimensional cubic nonlinear schrödinger equation, Eng. Anal. Boundary. Elem. , 37(6) (2013), 885-898.
-
[10]
B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10 (1992), 307-318.
-
[11]
C. Duarte, J. Oden, An h-p adaptative method using clouds , Comput. Methods Appl. Mech. Engrg., 139 (1996), 237-262.
-
[12]
S. N. Atluri, T. L. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech. , 22 (2) (1998), 117-127.
-
[13]
S. Abbasbandy, V. Sladek, A. Shirzadi, J. Sladek, Numerical Simulations for Coupled Pair of Diffusion Equations by MLPG Method, CMES Compt. Model. Eng. Sci. , 71 (1) (2011), 15-37.
-
[14]
A. Shirzadi, L. Ling, S. Abbasbandy, Meshless simulations of the two-dimensional fractional-time convectiondiffusion- reaction equations, Eng. Anal. Bound. Elem. , 36 (2012), 1522-1527.
-
[15]
T. Zhu, J. D. Zhang, S. N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput. Mech. , 21 (1998), 223-235.
-
[16]
J. M. Melenk, I. Babu ska, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. , 139 (1996), 289-314.
-
[17]
E. J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II, J. Comput. Math. Appl. , 19 (1990), 147-161.
-
[18]
M. Aslefallah, D. Rostamy, A Numerical Scheme For Solving Space-Fractional Equation By Finite Differences Theta-Method, Int. J. of Adv. in Aply. Math. and Mech., 1(4) (2014), 1-9.
-
[19]
L. B. Lucy, A numerical approach to the testing of fusion process, Astron. J. , 88 (1977), 1013-1024.
-
[20]
W. K. Liu, S. Jun, Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 21 (1995), 1081-1106.
-
[21]
M. Aslefallah, D. Rostamy, K. Hosseinkhani, Solving time-fractional differential diffusion equation by theta-method, Int. J. of Adv. in Aply. Math. and Mech., 2(1) (2014), 1-8.
-
[22]
G. R. Liu , Mesh Free Methods: Moving beyond the Finite Element Method, CRC Press., (2003)
-
[23]
E. Shivanian, Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics, Eng. Anal. Boundary. Elem., 37 (2013), 1693-1702.
-
[24]
M. Dehghan, A. Ghesmati, Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181 (2010), 772-786.
-
[25]
N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter, Spatial structures and generalized travelling waves for an integro-differential equation, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 537-557.
-
[26]
F. Fakhar-Izadi, M. Dehghan, An efficient pseudo-spectral LegendreGalerkin method for solving a nonlinear partial integro-differential equation arising in population dynamics, Math. Methods Appl. Sci., 36(12) (2013), 1485-1511.
-
[27]
M. Aslefallah, D. Rostamy , Numerical solution for Poisson fractional equation via finite differences theta-method, J. Math. Computer Sci. , TJMCS, 12(2) (2014), 132-142.
-
[28]
C. A. Micchell, Interpolation of scattered data; distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986), 11-22.