Integrated High Accuracy Multiquadric Quasi-interpolation Scheme for Solving the Nonlinear Klein-gordon Equation
-
2705
Downloads
-
3765
Views
Authors
Maryam Sarboland
- Department of Mathematics, Saveh Branch, Islamic Azad University, P.O. Box: 39187-366, Saveh, Iran,
Azim Aminataei
- Faculty of Mathematics, Department of Applied Mathematics, K. N. Toosi University of Technology, P.O. Box: 15418-49611, Tehran, Iran.
Abstract
A collocation scheme based on the use of the multiquadric quasi-interpolation operator
\(L_{w_2}\) , integrated
radial basis function networks (IRBFNs) method and three order finite difference method is applied to the
nonlinear Klein-Gordon equation. In the present scheme, the three order finite difference method is used
to discretize the temporal derivative and the integrated form of the multiquadric quasi-interpolation
scheme is used to approximate the unknown function and its spatial derivatives. Several numerical
experiments are provided to show the efficiency and the accuracy of the given method.
Share and Cite
ISRP Style
Maryam Sarboland, Azim Aminataei, Integrated High Accuracy Multiquadric Quasi-interpolation Scheme for Solving the Nonlinear Klein-gordon Equation, Journal of Mathematics and Computer Science, 14 (2015), no. 4, 258-273
AMA Style
Sarboland Maryam, Aminataei Azim, Integrated High Accuracy Multiquadric Quasi-interpolation Scheme for Solving the Nonlinear Klein-gordon Equation. J Math Comput SCI-JM. (2015); 14(4):258-273
Chicago/Turabian Style
Sarboland, Maryam, Aminataei, Azim. "Integrated High Accuracy Multiquadric Quasi-interpolation Scheme for Solving the Nonlinear Klein-gordon Equation." Journal of Mathematics and Computer Science, 14, no. 4 (2015): 258-273
Keywords
- Nonlinear Klein-Gordon equation
- multiquadric quasi-interpolation scheme
- collocation scheme
- integrated radial basis function networks.
MSC
References
-
[1]
R. K. Beatson, M. J. D. Powell, Univariate multiquadric approximation: quasi-interpolation to scattered data, Constr. Approx., 8 (3) (1992), 275-288.
-
[2]
J. Biazar, M. Hosami, Two effect approaches based on radial basis functions to nonlinear time-dependent partial differential equations, J. Math. Computer Sci., 9 (2014), 1-11.
-
[3]
R. H. Chen, Z. M. Wu, Solving hyperbolic conservation laws using multiquadric quasiinterpolation, Numer. Methods Partial Differential Equations, 22 (4) (2006), 776-796.
-
[4]
R. H. Chen, Z. M. Wu, Solving partial differential equation by using multiquadric quasiinterpolation, Appl. Math. Comput, 186 (2) (2007), 1502-1510.
-
[5]
M. Dehghan, A. Shokri, A numerical method for KdV equation using collation and radial basis functions, Nonlinear Dyn., 50 (2007), 111-120.
-
[6]
M. Dehghan, A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Mathematics and Computers Simulation, 79 (2008), 700-715.
-
[7]
M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400-410.
-
[8]
Z. M. Wu, Dynamically knots setting in meshless method for solving time dependent propagations equation, Comput. Methods Appl. Mech. Eng., 193 (12-14) (2004), 1221-1229.
-
[9]
Z. M. Wu, Dynamically knot and shape parameter setting for simulating shock wave by using multiquadric quasi-interpolation, Engineering Analysis with Boundary Elements, 29 (2005), 354-358.
-
[10]
S. M. El-Sayed, The decomposition method for studying the Klein-Gordon equation, Chaos Solitons Fractals, 18 (2003), 1025-1030.
-
[11]
Y. C. Hon, X. Z. Mao, An efficient numerical scheme for Burgers’ equation, Appl. Math. Comput, 95 (1998), 37-50.
-
[12]
Y. C. Hon, Z. M. Wu, A quasi-interpolation method for solving stiff ordinary differential equations, Internat. J. Numer. Methods Eng., 48 (8) (2000), 1187-1197.
-
[13]
E. J. Kansa, Multiquadric-a scattered data approximation scheme with applications to computational fluid dynamics I, Comput. Math. Appl. , 19 (1990), 127-145.
-
[14]
E. J. Kansa, Multiquadric-a scattered data approximation scheme with applications to computational fluid dynamics II, Comput. Math. Appl., 19 (1990), 147-161.
-
[15]
D. Kaya, S. M. El-Sayed, A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput. , 156 (2004), 341-353.
-
[16]
Z. W. Jiang, R. H. Wang, C. G. Zhu, M. Xu, High accuracy multiquadric quasi-interpolation, Appl. Math. Modelling, 35 (2011), 2185-2195.
-
[17]
Z. W. Jiang, R. H. Wang, Numerical solution of one-dimensional sine-Gordon equation using high accuracy multiquadric quasi-interpolation, Appl. Math. comput., 218 (2012), 7711-7716.
-
[18]
S. Jimenez, L. Vazquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation, Appl. Math. Comput. , 35 (1990), 61-94.
-
[19]
W. R. Madych, S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Math. Comp., 54 (1990), 211-230.
-
[20]
N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using multiquadric radial basis function networks, Neural Netw., 14 (2001), 185-199.
-
[21]
J. K. Perring, T. H. Skyrme, A model unified field equation, Nucl. Phys., 31 (1962), 550-555.
-
[22]
J. Rashidinia, M. Ghasemia, R. Jalilian, Numerical solution of the nonlinear Klein-Gordon equation, J. Comput. Appl. Math., 233 (2010), 1866-1878.
-
[23]
M. Sarboland, A. Aminataei, On the numerical solution of one-dimensional nonlinear nonhomogeneous Burgers equation, J. Appl. Math., doi:10.1155/2014/598432. , 2014 (2014), 15 pages
-
[24]
M. Sarboland, A. Aminataei, Improvement of the multiquadric quasi-interpolation W2 L , J. Math. Computer Sci., 11 (2014), 13-21.
-
[25]
Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos Solitons Fractals, 31(4) (2007), 943-950.
-
[26]
Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. Lett. A, 356 (2) (2006), 124-130.
-
[27]
C. Shu, L. Wu , Integrated radial basis functions-based differential quadrature method and its performance, Int. J. Numer. Methods Fluids, 53 (2007), 969-984.
-
[28]
A. M. Wazwaz, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173 (2006), 165-176.
-
[29]
Z. M. Wu, R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi- interpolation , Acta.Math. Appl. Sinica (English Ser.), 10 (4) (1994), 441- 446.
-
[30]
A. M. Wazwaz, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math.Comput., 167 (2005), 1179-1195.
-
[31]
A. M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Communications in Nonlinear Science and Numerical Simulation, 13 (2008), 889- 901.
-
[32]
M. L. Xiao, R. H. Wang, C. H. Zhu, Applying multiquadric quasi-interpolation to solve KdV equation, Mathematical Research Exposition, 31 (2011), 191-201.