Generalized Normed Spaces and Fixed Point Theorems
-
4245
Downloads
-
5282
Views
Authors
Kamran Alam Khan
- Department of Mathematics, V. R. A. L. Govt. Girls P. G. College, Bareilly (U.P.)-INDIA
Abstract
Gähler ([4], [5]) introduced and investigated the notion of 2-metric spaces and 2-normed spaces in sixties. These concepts are inspired by the notion of area in two dimensional Euclidean space. In this paper, we choose a fundamentally different approach and introduce a possible generalization of usual norm retaining the distance analogue properties. This generalized norm will be called as G-norm. We show that every G-normed space is a G-metric space and therefore, a topological space and develop the theory for G-normed spaces. We also introduce G-Banach spaces and obtain some fixed point theorems.
Share and Cite
ISRP Style
Kamran Alam Khan, Generalized Normed Spaces and Fixed Point Theorems, Journal of Mathematics and Computer Science, 13 (2014), no. 2, 157-167
AMA Style
Khan Kamran Alam, Generalized Normed Spaces and Fixed Point Theorems. J Math Comput SCI-JM. (2014); 13(2):157-167
Chicago/Turabian Style
Khan, Kamran Alam. "Generalized Normed Spaces and Fixed Point Theorems." Journal of Mathematics and Computer Science, 13, no. 2 (2014): 157-167
Keywords
- Linear 2-normed space
- invex set
- G-normed space
- G-metric space
- Fixed point theorem
MSC
References
-
[1]
B. C. Dhage, A study of some fixed point theorem, Ph.D. Thesis, Marathwada Univ., Aurangabad (1984)
-
[2]
R. Freese, Y. J. Cho, S. S. Kim, Strictly 2-convex linear 2-normed spaces, J. Korean Math. Soc. , 29 (1992), 391-400.
-
[3]
R. Freese, Y. J. Cho , Geometry of Linear 2-normed Spaces, Nova Science Publ., New York (2001)
-
[4]
S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr., 26 (1963), 115-148.
-
[5]
S. Gähler, Lineare 2-normierte Räume, Math. Nachr. , 28 (1964), 1-43.
-
[6]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, I, Math. Nachr. , 40 (1969), 165-189.
-
[7]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume , II, Math. Nachr , 40 (1969), 229-264.
-
[8]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, III, Math. Nachr. , 41 (1969), 23-36.
-
[9]
H. Gunawan, Mashadi, On -normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
-
[10]
K. S. Ha, Y. J. Cho, A. White, Strictly convex and 2-convex 2-normed spaces , Math. Japonica, 33 (1988), 375-384.
-
[11]
K. A. Khan, Generalized n-metric spaces and fixed point theorems, to appear in Journal of Nonlinear and Convex Analysis, (),
-
[12]
A. Misiak, n-inner product spaces, Math.Nachr. , 140 (1989), 299-319.
-
[13]
Z. Mustafa, B. Sims , Some remarks concerning D-metric spaces, Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, July, (2003), 189-198.
-
[14]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis , 7 (2006), 289-297.
-
[15]
A. K. Sharma, A note on fixed points in 2-metric spaces , Indian J. Pure Appl. Math. , 11 (1980), 1580-1583.
-
[16]
R. K. Vats, S. Kumar, V. Sihag, Common fixed point theorem for expansive mappings in G-metric spaces, Journal of Mathematics and Computer Science , 6 (2013), 60-71.