A Kantorovich variant of a generalized Bernstein operators
-
2029
Downloads
-
4903
Views
Authors
Arun Kajla
- Department of Mathematics, Central University of Haryana, Haryana-123031, India.
Praveen Agarwal
- Department of Mathematics, Anand International College of Engineering, Jaipur, Rajasthan, India.
Serkan Araci
- Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410, Gaziantep, Turkey.
Abstract
In this note we present a Kantorovich variant of the operators proposed by
[X. Y. Chen, J. Q. Tan, Z. Liu, J. Xie, J. Math. Anal.
Appl., \(\textbf{450}\) (2017), 244--261] based on
non-negative parameters. Here, we prove an approximation theorem with the
help of Bohman-Korovkin's principle and study the estimate of the rate of
approximation by using the modulus of smoothness and Lipschitz type function
for these operators. Also, we establish Voronovskaja type theorem and
Korovkin type A-statistical approximation theorem of these operators.
Share and Cite
ISRP Style
Arun Kajla, Praveen Agarwal, Serkan Araci, A Kantorovich variant of a generalized Bernstein operators, Journal of Mathematics and Computer Science, 19 (2019), no. 2, 86--96
AMA Style
Kajla Arun, Agarwal Praveen, Araci Serkan, A Kantorovich variant of a generalized Bernstein operators. J Math Comput SCI-JM. (2019); 19(2):86--96
Chicago/Turabian Style
Kajla, Arun, Agarwal, Praveen, Araci, Serkan. "A Kantorovich variant of a generalized Bernstein operators." Journal of Mathematics and Computer Science, 19, no. 2 (2019): 86--96
Keywords
- Global approximation
- rate of convergence
- modulus of continuity
- A-statistical convergence
- Kantorovich operators
MSC
References
-
[1]
U. Abel, M. Heilmann, The complete asymptotic expansion for Bernstein-Durrmeyer operators with Jacobi weights, Mediterr. J. Math., 1 (2004), 487--499
-
[2]
A. M. Acu, Stancu-Schurer-Kantorovich operators based on $q$--integers, Appl. Math. Comput., 259 (2015), 896--907
-
[3]
P. N. Agrawal, M. Goyal, A. Kajla, $q$--Bernstein-Schurer-Kantorovich type operators, Boll. Unione Mat. Ital., 8 (2015), 169--180
-
[4]
F. Altomare, M. M. Cappelletti, V. Leonessa, On a generalization of Szasz-Mirakjan-Kantorovich operators, Results Math., 63 (2013), 837--863
-
[5]
A. Aral, O. Doğru, Bleimann Butzer and Hahn operators based on $q$--integers, J. Inequal. Appl., 2007 (2007), 12 pages
-
[6]
S. Aytar, A characterization theorem for levelwise statistical convergence, Filomat, 25 (2011), 133--143
-
[7]
D. Bărbosu, Kantorovich-Stancu type operators, JIPAM. J. Inequal. Pure Appl. Math., 5 (2004), 6 pages
-
[8]
C. Bardaro, G. Vinti, P. L. Butzer, R. L. Stens, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 29--52
-
[9]
D. Cárdenas-Morales, V. Gupta, Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342--353
-
[10]
X. Y. Chen, J. Q. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244--261
-
[11]
J. de la Cal, A. M. Valle, A generalization of Bernstein-Kantorovič operators, J. Math. Anal. Appl., 252 (2000), 750--766
-
[12]
N. Deo, M. Dhamija, D. Miclăuş, Stancu–Kantorovich operators based on inverse Pólya–Eggenberger distribution, Appl. Math. Comput., 273 (2016), 281--289
-
[13]
R. A. Devore, G. G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York-London (1993)
-
[14]
Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York (1987)
-
[15]
O. Dogru, O. Duman, Statistical approximation of Meyer-König and Zeller operators based on $q$-integers, Publ. Math. Debrecen, 68 (2006), 199--214
-
[16]
O. Duman, C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187--197
-
[17]
E. Erkuş, O. Duman, H. M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput., 182 (2006), 213--222
-
[18]
A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129--138
-
[19]
H. Gonska, M. Heilmann, I. Raşa, Kantorovich operators of order $k$, Numer. Funct. Anal. Optim., 32 (2011), 717--738
-
[20]
H. Gonska, R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (2010), 783--799
-
[21]
V. Gupta, A. M. Acu, D. F. Sofonea, Approximation of Baskakov type Pólya–Durrmeyer operators, Appl. Math. Comput., 294 (2017), 318--331
-
[22]
G. İçöz, A Kantorovich variant of a new type Bernstein-Stancu polynomials, Appl. Math. Comput., 218 (2012), 8552--8560
-
[23]
A. Kajla, P. N. Agrawal, Szász–Durrmeyer type operators based on Charlier polynomials, Appl. Math. Comput., 268 (2015), 1001--1014
-
[24]
N. I. Mahamodov, Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on $q$-integers, Cent. Eur. J. Math., 8 (2010), 816--826
-
[25]
M. A. Özarslan, H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173--181
-
[26]
M. A. Özarslan, O. Duman, Smoothness properties of modified Bernstein-Kantorovich operators, Numer. Funct. Anal. Optim., 37 (2016), 92--105
-
[27]
Q. Razi, Approximation of a function by Kantorovich type operators, Mat. Vesnik, 41 (1989), 183--192
-
[28]
D. D. Stancu, The remainder in the approximation by a generalized Bernstein operator: a representation by a convex combination of second-order divided differences, Calcolo, 35 (1998), 53--62