Some unified formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums
-
1899
Downloads
-
4023
Views
Authors
Serkan Araci
- Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410, Gaziantep, Turkey.
Mumtaz Riyasat
- Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India.
Subuhi Khan
- Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India.
Shahid Ahmad Wani
- Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India.
Abstract
The article aims to introduce a new unified class of generalized Apostol type polynomials. Further, under a slight modification on the parameters associated to the generalized Apostol type and generalized Gould-Hopper polynomials and by the use of generating method, we introduce a new class of generalized-Apostol-type-Gould-Hopper polynomials. We state some quasi-monomial properties for a new class of extensions of generalized Apostol type polynomials as well as, some summation, multiplication and explicit formulae which connect this polynomial class with the \(\lambda\)-Stirling numbers of second kind and generalized Hurwitz zeta function. Some general symmetry identities involving multiple power sums are also established. The new class of polynomials contains as its special cases, not only the generalized-Gould-Hopper-Apostol-Bernoulli, Euler and Genocchi polynomials but many more known smaller classes of polynomials. Finally, the these polynomials are framed within the context of generalized modified Milne-Thomson's polynomials.
Share and Cite
ISRP Style
Serkan Araci, Mumtaz Riyasat, Subuhi Khan, Shahid Ahmad Wani, Some unified formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums, Journal of Mathematics and Computer Science, 19 (2019), no. 2, 97--115
AMA Style
Araci Serkan, Riyasat Mumtaz, Khan Subuhi, Wani Shahid Ahmad, Some unified formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums. J Math Comput SCI-JM. (2019); 19(2):97--115
Chicago/Turabian Style
Araci, Serkan, Riyasat, Mumtaz, Khan, Subuhi, Wani, Shahid Ahmad. "Some unified formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums." Journal of Mathematics and Computer Science, 19, no. 2 (2019): 97--115
Keywords
- Generalized-Apostol-type-Gould-Hopper polynomials
- monomiality principle
- summation formula
- multiplication formulae
- symmetry identities
MSC
References
-
[1]
P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villar, Paris (1926)
-
[2]
S. Araci, M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 22 (2012), 399--406
-
[3]
S. Araci, M. Acikgoz, On the von Staudt--Clausen's theorem related to $q$-Frobenius-Euler numbers, J. Number Theory, 159 (2016), 329--339
-
[4]
L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions (Translated from the French by J. W. Nienhuys), D. Reidel Publishing Company, Boston-Dordrecht (1974)
-
[5]
G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced Special functions and applications, Procedings of the 1999 Melfi Workshop on generalised special functions and applications, 1999 (1999), 147--164
-
[6]
G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111--123
-
[7]
G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento Soc. Ital. Fis. B, 119 (2004), 479--488
-
[8]
G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Generalized Bessel functions and generalized Hermite polynomials, J. Math. Anal. Appl., 178 (1993), 509--516
-
[9]
G. Dattoli, S. Lorenzutta, G. Maino, A. Torre, C. Cesarano, Generalized Hermite polynomials and super-Gaussian forms, J. Math. Anal. Appl., 203 (1996), 597--609
-
[10]
R. Dere, Y. Simsek, Bernoulli type polynomials on umbral algebra, Russ. J. Math. Phys., 22 (2015), 1--5
-
[11]
H. W. Gould, A. T. Hopper, Operational formulas connected with two generalization of Hermite polynomials, Duke Math. J., 29 (1962), 51--63
-
[12]
S. P. Goyal, R. K. Laddha, On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, 11 (1997), 99--108
-
[13]
Y. He, S. Araci, H. M. Srivastava, M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., 262 (2015), 31--41
-
[14]
H. Jolany, H. Sharifi, R. E. Alikelaye, Some results for the Apostol Genocchi polynomials of higher order, Bull. Malays. Math. Sci. Soc. (2), 36 (2013), 465--479
-
[15]
S. Khan, M. A. Pathan, N. A. M. H. Makhboul, G. Yasmin, Implicit summation formula for Hermite and related polynomials, J. Math. Anal. Appl., 344 (2008), 408--416
-
[16]
S. Khan, M. Riyasat, A determinantal approach to Sheffer-Appell polynomials via monomiality principle, J. Math. Anal. Appl., 421 (2015), 806--829
-
[17]
S. Khan, M. Riyasat, Determinantal approach to certain mixed special polynomials related to Gould-Hopper polynomials, Appl. Math. Comput., 251 (2015), 599--614
-
[18]
S. Khan, M. Riyasat, G. Yasmin, Finding symmetry identities for the 2-variable Apostol type polynomials, Tbilisi Math. J., 10 (2017), 65--81
-
[19]
S. Khan, G. Yasmin, M. Riyasat, Certain results for the 2-variable Apostol type and related polynomials, Comput. Math. Appl., 69 (2015), 1367--1382
-
[20]
V. Kurt, Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums, Adv. Difference Equ., 2013 (2013), 32 pages
-
[21]
V. Kurt, On the Unified Family of Generalized Apostol-type Polynomials of Higher order and Multiple Power Sums, Filomat, 30 (2016), 929--935
-
[22]
V. Kurt, Some symmetry identities for the unified Apostol-type polynomials and multiple power sums, Filomat, 30 (2016), 583--592
-
[23]
B. Kurt, Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, AIP Conference Proceedings, 2011 (2011), 385--388
-
[24]
B. Kurt, Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ., 2013 (2013), 9 pages
-
[25]
Q.-M. Luo, Apostol-Euler polynomials of higher order and the Gaussian hypergeometric function, Taiwanese J. Math., 10 (2006), 917--925
-
[26]
Q.-M. Luo, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct., 20 (2009), 377--391
-
[27]
Q.-M. Luo, Extension for the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math., 48 (2011), 291--309
-
[28]
Q.-M. Luo, Multiplication formulas for Apostol-type polynomials and multiple alternating sums, Math. Notes, 91 (2012), 46--57
-
[29]
Q.-M. Luo, The multiplication formulas for the Apostol-Genocchi polynomials, Util. Math., 89 (2012), 179--191
-
[30]
Q.-M. Luo, B.-N. Guo, F. Qi, L. Debnath, Generalization of Bernoulli numbers and polynomials, Int. J. Math. Sci., 59 (2003), 3769--3776
-
[31]
Q.-M. Luo, F. Qi, L. Debnath, Generalization of Euler numbers and polynomials, Int. J. Math. Sci., 61 (2003), 3893--3901
-
[32]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290--302
-
[33]
Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51 (2006), 631--642
-
[34]
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702--5728
-
[35]
M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452--2462
-
[36]
M. A. Özarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Difference Equ., 2013 (2013), 13 pages
-
[37]
M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite based-polynomials, Acta Univ. Apulensis Math. Inform., 39 (2014), 113--136
-
[38]
Y. Simsek, Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl., 2013 (2013), 28 pages
-
[39]
H. M. Srivastava, M. Garg, S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys., 17 (2010), 251--261
-
[40]
H. M. Srivastava, M. A. Özarslan, C. Kaanoğlu, Some families of generating functions for a certain class of three-variable polynomials, Integral Transforms Spec. Funct., 21 (2010), 885--896
-
[41]
B. Yilmaz, M. A. Özarslan, , Differential equations for the extended 2D Bernoulli and Euler polynomials, Adv. Difference Equ., 2013 (2013), 16 pages