Null controllability of fractional stochastic delay integro-differential equations
Volume 19, Issue 3, pp 143--150
http://dx.doi.org/10.22436/jmcs.019.03.01
Publication Date: May 15, 2019
Submission Date: September 12, 2017
Revision Date: December 31, 2018
Accteptance Date: April 30, 2019
-
2237
Downloads
-
3894
Views
Authors
Hamdy M. Ahmed
- Higher Institute of Engineering, El-Shorouk Academy, El-Shorouk City, Cairo, Egypt.
Mahmoud M. El-Borai
- Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt.
H. M. El-Owaidy
- Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt.
A. S. Ghanem
- Higher Institute of Engineering, El-Shorouk Academy, El-Shorouk City, Cairo, Egypt.
Abstract
Sufficient conditions for exact null controllability of semilinear fractional stochastic delay integro-differential equations in Hilbert space are established. The required results are obtained based on fractional calculus, semigroup theory, Schauder's fixed point theorem and stochastic analysis.
In the end, an example is given to show the application of our results.
Share and Cite
ISRP Style
Hamdy M. Ahmed, Mahmoud M. El-Borai, H. M. El-Owaidy, A. S. Ghanem, Null controllability of fractional stochastic delay integro-differential equations, Journal of Mathematics and Computer Science, 19 (2019), no. 3, 143--150
AMA Style
Ahmed Hamdy M., El-Borai Mahmoud M., El-Owaidy H. M., Ghanem A. S., Null controllability of fractional stochastic delay integro-differential equations. J Math Comput SCI-JM. (2019); 19(3):143--150
Chicago/Turabian Style
Ahmed, Hamdy M., El-Borai, Mahmoud M., El-Owaidy, H. M., Ghanem, A. S.. "Null controllability of fractional stochastic delay integro-differential equations." Journal of Mathematics and Computer Science, 19, no. 3 (2019): 143--150
Keywords
- Fractional calculus
- null controllability
- fractional stochastic delay integrodifferential equation
- Schauder's fixed point theorem
MSC
References
-
[1]
O. Abu Arqub, Solutions of time--fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space, Numer. Methods Partial Differential Equations, 34 (2018), 1759--1780
-
[2]
O. Abu Arqub, M. Al-Smadi, Atangana--Baleanu fractional approach to the solutions of Bagley--Torvik and Painlevé equations in Hilbert space, Chaos Solitons Fractals, 117 (2018), 161--167
-
[3]
O. Abu Arqub, M. Al-Smadi, Numerical algorithm for solving time--fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions, Numer. Methods Partial Differential Equations, 34 (2018), 1577--1597
-
[4]
O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana--Baleanu fractional operator, Chaos Solitons Fractals, 117 (2018), 117--124
-
[5]
O. Abu Arqub, Z. Odibat, M. Al-Smadi, Numerical solutions of time--fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates, Nonlinear Dyn., 94 (2018), 1819--1834
-
[6]
H. M. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J. Math., 30 (2009), 195--202
-
[7]
H. M. Ahmed, On some fractional stochastic integrodifferential equations in Hilbert spaces, Int. J. Math. Math. Sci., 2009 (2009), 8 pages
-
[8]
H. M. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Difference Equ., 2014 (2014), 11 pages
-
[9]
H. M. Ahmed, M. M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331 (2018), 182--189
-
[10]
A. Ali, B. Samet, K. Shah, R. A. Khan, Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 13 pages
-
[11]
A. Ali, K. Shah, R. A. Khan, Existence of solution to a coupled system of hybrid fractional differential equations, Bull. Math. Anal. Appl., 9 (2017), 9--18
-
[12]
M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time--fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280--294
-
[13]
K. Balachandran, P. Balasubramaniam, J. P. Dauer, Local null controllability of nonlinear functional differential systems in Banach space, J. Optim. Theory Appl., 88 (1996), 61--75
-
[14]
K. Balachandran, J.-H. Kim, Sample controllability of nonlinear stochastic integrodifferential systems, Nonlinear Anal. Hybrid Syst., 4 (2010), 543--549
-
[15]
J. P. Dauer, P. Balasubramaniam, Null controllability of semilinear integrodifferential systems in Banach spaces, Appl. Math. Lett., 10 (1997), 117--123
-
[16]
J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322--332
-
[17]
X. L. Fu, Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Math. Sci. Ser. B (Engl. Ed.), 33 (2013), 747--757
-
[18]
P. Kumama, A. Ali, K. Shah, R. A. Khan, Existence results and Hyers--Ullam stability to a class of nonlinear arbitrary order differential equations, J. Nonlinear Sci. Appl., 2017 (2017), 2986--2997
-
[19]
P. Kumlin, A note on fixed point theory, Chalmers and GU, Gothenburg (2004)
-
[20]
C. M. Marle, Measures et Probabilités, Hermann, Paris (1974)
-
[21]
K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, John Wiley \& Sons, New York (1993)
-
[22]
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York (1983)
-
[23]
I. Podlubny, Fractional differential equations, Academic press, San Diego (1999)
-
[24]
R. Sakthivel, S. Suganya, S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660--668
-
[25]
W. R. Schneider, W. Wyss, Fractional diffusion and wave equation, J. Math. Phys., 30 (1989), 134--144
-
[26]
K. Shah, A. Ali, R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi--point boundary value problems, Bound. Value Probl., 2016 (2016), 12 pages
-
[27]
Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063--1077