New scheme for nonlinear Schrödinger equations with variable coefficients
-
1961
Downloads
-
3916
Views
Authors
Xiu-Ling Yin
- School of Mathematical Sciences, Dezhou University, Dezhou, China.
Shu-Xia Kong
- School of Mathematical Sciences, Dezhou University, Dezhou, China.
Yan-Qin Liu
- School of Mathematical Sciences, Dezhou University, Dezhou, China.
Xiao-Tong Zheng
- School of Statistics, Renmin University of China, Beijing, China.
Abstract
This paper proposes a numerical scheme for nonlinear Schrödinger equations with periodic variable coefficients and stochastic perturbation. The scheme is obtained by applying finite element method in spatial direction and finite difference scheme in temporal direction, respectively. The scheme is stable in the sense that it preserves discrete charge of the Schrödinger equations. The numerical examples verify the conservative property of the new scheme.
Share and Cite
ISRP Style
Xiu-Ling Yin, Shu-Xia Kong, Yan-Qin Liu, Xiao-Tong Zheng, New scheme for nonlinear Schrödinger equations with variable coefficients, Journal of Mathematics and Computer Science, 19 (2019), no. 3, 151--157
AMA Style
Yin Xiu-Ling, Kong Shu-Xia, Liu Yan-Qin, Zheng Xiao-Tong, New scheme for nonlinear Schrödinger equations with variable coefficients. J Math Comput SCI-JM. (2019); 19(3):151--157
Chicago/Turabian Style
Yin, Xiu-Ling, Kong, Shu-Xia, Liu, Yan-Qin, Zheng, Xiao-Tong. "New scheme for nonlinear Schrödinger equations with variable coefficients." Journal of Mathematics and Computer Science, 19, no. 3 (2019): 151--157
Keywords
- Schrödinger equation
- finite element method
- finite difference scheme
MSC
References
-
[1]
V. Barbu, M. Röckner, D. Zhang, Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach, J. Nonlinear Sci., 24 (2014), 383--409
-
[2]
C. C. Chen, J. L. Hong, L. H. Ji, A symplectic local discontinuous Galerkin method for stochastic Schrödinger equation, arXiv, 2014 (2014), 19 pages
-
[3]
C. C. Chen, J. L. Hong, A. Prohl, Convergence of a $\theta$--scheme to solve the stochastic nonlinear Schrödinger equation with Stratonovich noise, Stochastic Part. Diff. Equ. Anal. Comput., 4 (2016), 274--318
-
[4]
J.-B. Chen, M.-Z. Qin, Multi--symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 12 (2001), 193--204
-
[5]
A. de Bouard, A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), 369--399
-
[6]
M. Dehghan, A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equation with constant and variable Coefficients, Comput. Phys. Commun., 181 (2010), 43--51
-
[7]
W. Gao, H. Li, Y. Liu, X. X. Wei, A Padé compact high-order finite volume scheme for nonlinear Schrödinger equations, Appl. Numer. Math., 85 (2014), 115--127
-
[8]
J.-H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Soliton Fractals, 34 (2007), 1421--429
-
[9]
B. İnan, A. R. Bahadir, Numerical solutions of MRLW equation by a fully implicit finite-difference scheme, J. Math. Computer Sci., 15 (2015), 228--239
-
[10]
S. S. Jiang, L. J. Wang, J. L. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Commun. Comput. Phys., 14 (2013), 393--411
-
[11]
O. Karakashian, C. Makridakis, A space--time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36 (2006), 1779--1807
-
[12]
L. H. Kong, P. Wei, Y. Q. Hong, P. Zhang, P. Wang, Efficient energy-preserving scheme of the three--coupled nonlinear Schrödinger equation, Math. Meth. Appl. Sci., 2019 (2019), 14 pages
-
[13]
J. Liu, Order of convergence of splitting schemes for both deterministic and stochastic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 51 (2013), 1911--1932
-
[14]
G. N. Milstein, M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin (2004)
-
[15]
C. M. Mora, Numerical solution of conservative finite--dimensional stochastic Schrödinger equations, Ann. Appl. Probab., 15 (2005), 2144--2171
-
[16]
M. Sarboland, A. Aminataei, Integrated high accuracy multiquadric quasi-interpolation scheme for solving the nonlinear Klein--Gordon equation, J. Math. Computer Sci., 14 (2015), 258--273
-
[17]
Y. F. Tang, J. W. Cao, X. T. Liu, Y. C. Sun, Symplectic methods for the Ablowitz--Ladik discrete nonlinear Schrödinger equation, J. Phys. A, 40 (2007), 2425--2437
-
[18]
J. L. Wang, A new error analysis of Crank--Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), 390--407
-
[19]
T. C. Wang, B. L. Guo, Q. B. Xu, Fourth--order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243 (2013), 382--399
-
[20]
Y. S. Wang, Q. H. Li, Y. Z. Song, General: two new simple multi--Symplectic schemes for the nonlinear Schrödinger equation, Chinese Phys. Lett., 25 (2008), 1538--1540
-
[21]
L. Wu, Two--grid mixed finite-element methods for nonlinear Schrödinger equations, Numer. Methods Partial Differential Equations, 28 (2012), 63--73
-
[22]
X.-J. Yang, D. Baleanu, Y. Khan, S. T. Mohyud-Din, Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian J. Phys., 59 (2014), 36--48
-
[23]
Y. Zhang, C. Cattani, X.-J. Yang, Local fractional homotopy perturbation method for solving non--homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753--6764
-
[24]
H. J. Zhu, Y. M. Chen, S. H. Song, H. Y. Hu, Symplectic and multi--symplectic wavelet collocation methods for two--dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 308--321