An improvement of Laguerre computational scheme for solving nonlinear age-structured population models
-
2088
Downloads
-
3903
Views
Authors
Zakieh Avazzadeh
- School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China.
Mohammad Heydari
- Department of Mathematics, Yazd University, P. O. Box: 89195-741, Yazd, Iran.
Shantia Yarahmadian
- Mississippi State University, MS 39762, United States.
Abstract
In this paper, we simultaneously implement two kinds of orthogonal polynomials for solving a nonlinear age-structured population model. This non-classic type of partial differential equation is typically defined in large domains that makes finding an accurate solution by common techniques to be difficult. The presented method namely modified generalized Laguerre-Chebyshev (MGLC), which is based on the modified generalized Laguerre functions and Chebyshev orthogonal polynomials provides the spectral accuracy. The theoretical and experimental analysis of the scheme reliability verifies the validity of the proposed method in large domains.
Share and Cite
ISRP Style
Zakieh Avazzadeh, Mohammad Heydari, Shantia Yarahmadian, An improvement of Laguerre computational scheme for solving nonlinear age-structured population models, Journal of Mathematics and Computer Science, 19 (2019), no. 4, 268--287
AMA Style
Avazzadeh Zakieh, Heydari Mohammad, Yarahmadian Shantia, An improvement of Laguerre computational scheme for solving nonlinear age-structured population models. J Math Comput SCI-JM. (2019); 19(4):268--287
Chicago/Turabian Style
Avazzadeh, Zakieh, Heydari, Mohammad, Yarahmadian, Shantia. "An improvement of Laguerre computational scheme for solving nonlinear age-structured population models." Journal of Mathematics and Computer Science, 19, no. 4 (2019): 268--287
Keywords
- Nonlinear age-structured population model
- generalized Laguerre functions
- modified generalized Laguerre functions
- orthogonal polynomials
- error analysis
MSC
References
-
[1]
S. Abbasbandy, E. Shivanian, Numerical simulation based on meshless technique to study the biological population model, Math. Sci., 10 (2016), 123--130
-
[2]
L. M. Abia, O. Angulo, J. C. López-Marcos, Age-structured population dynamics models and their numerical solutions, Ecological Modelling, 188 (2005), 122--136
-
[3]
L. M. Abia, O. Angulo, J. C. López-Marcos, M. A. López-Marcos, Numerical schemes for a size-structured cell population model with equal fission, Math. Comput. Modelling, 50 (2009), 653--664
-
[4]
L. M. Abia, J. C. López-Marcos, Second order schemes for age-structured population equations, J. Biol. Syst., 5 (1997), 1--16
-
[5]
O. Angulo, J. C. López-Marcos, M. A. López-Marcos, F. A. Milner, A numerical method for nonlinear age-structured population models with fnite maximum age, J. Math. Anal. Appl., 361 (2010), 150--160
-
[6]
Z. Avazzadeh, M. Heydari, Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind, Comput. Appl. Math., 31 (2012), 127--142
-
[7]
Z. Avazzadeh, M. Heydari, Chebyshev cardinal functions for solving age-structured population models, Int. J. Appl. Comput. Math., 3 (2017), 2139--2149
-
[8]
Z. Avazzadeh, M. Heydari, Haar wavelet method for solving nonlinear age-structured population models, Int. J. Biomath., 10 (2017), 21 pages
-
[9]
S. S. Bayin, Mathematical Methods in Science and Engineering, John Wiley & Sons, Hoboken (2006)
-
[10]
G. Ben-yu, W. Zhong-qing, Numerical integration based on Laguerre-Gauss interpolation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3726--3741
-
[11]
B. Blasius, J. R. Kurths, L. Stone, Complex Population Dynamics, World Scientific, New York (2007)
-
[12]
J. P. Boyd, The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys., 45 (1982), 43--79
-
[13]
J. P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69 (1987), 112--142
-
[14]
J. P. Boyd, The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-Mapping for pseudospectral computations on an infinite interval, J. Comput. Phys., 110 (1994), 360--372
-
[15]
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publication Inc., Mineola (2001)
-
[16]
C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York (1988)
-
[17]
M. G. Cui, Z. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Anal. Real World Appl., 8 (2007), 1096--1112
-
[18]
C. Cusulin, L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations, Numer. Methods Partial Differential Equations, 26 (2010), 253--273
-
[19]
P. J. Davis, Interpolation and Approximation, Dover Publications, New York (1975)
-
[20]
D. Funaro, Polynomial Approximation of Differential Equations, Springer-Verlag, Berlin (1992)
-
[21]
M. Ghoreishi, A. I. B. M. Ismail, A. K. Alomari, A. S. Bataineh, The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age-structured population models, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1163--1177
-
[22]
M. Heydari, S. M. Hosseini, G. B. Loghmani, Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math., 4 (2012), 135--146
-
[23]
M. Heydari, G. B. Loghmani, A. A. Dehghan, A combination of pseudo-spectral method and extrapolation for solving MHD flow and heat transfer about a rotating disk, Iran. J. Sci. Technol. Trans., 38 (2014), 25--44
-
[24]
M. Heydari, G. B. Loghmani, A. A. Dehghan, Numerical study of generalized three-dimensional MHD flow over a porous stretching sheet, J. Appl. Fluid. Mech., 7 (2014), 473--483
-
[25]
M. M. Hosseini, S. T. Mohyud-Dinb, H. Ghaneai, Variational iteration method for nonlinear age-structured population models using auxiliary parameter, Z. Naturforsch. A, 65 (2010), 1137--1142
-
[26]
M. Iannelli, M.-Y. Kim, E.-J. Park, Splitting method for the numerical approximation of some models of age-structured population dynamics and epidemiology, Appl. Math. Comput., 87 (1997), 69--93
-
[27]
M. Iannelli, F. A. Milner, On the approximation of the Lotka-McKendrick equation with finite life-span, J. Comput. Appl. Math., 136 (2001), 245--254
-
[28]
A. Kadem, D. Baleanu, Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, Commun. Nonlinear. Sci. Numer. Simul., 15 (2010), 491--501
-
[29]
A. Kadem, D. Baleanu, Fractional radiative transfer equation within Chebyshev spectral approach, Comput. Math. Appl., 59 (2010), 1865--1873
-
[30]
F. Kappel, K. P. Zhang, Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518--549
-
[31]
M.-Y. Kim, E.-J. Park, An upwind scheme for a nonlinear model in age-structured population dynamics, Comput. Math. Appl., 30 (1995), 5--17
-
[32]
H. Koçak, A. Yildirim, An efficient algorithm for solving nonlinear age-structured population models by combining homotopy perturbation and Padé techniques, Int. J. Comput. Math., 88 (2011), 491--500
-
[33]
P. Krzyżanowski, D. Wrzosek, D. Wit, Discontinuous Galerkin method for piecewise regular solution to the nonlinear age-structured population model, Math. Biosci., 203 (2006), 277--300
-
[34]
P. K. Kythe, M. R. Schäferkotter, Handbook of Computational Method for Integration, Chapman & Hall/CRC Press, Boca Raton (2005)
-
[35]
X. Y. Li, Variational iteration method for nonlinear age-structured population models, Comput. Math. Appl., 58 (2009), 2177--2181
-
[36]
Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, A numerical solution of open-loop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math., 300 (2016), 369--384
-
[37]
Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, Application of shifted Jacobi pseudospectral method for solving (in) finite-horizon minmax optimal control problems with uncertainty, Internat. J. Control, 13 (2017), 725--739
-
[38]
Z. Nikooeinejad, M. Heydari, Nash equilibrium approximation of some class of stochastic differential games: A combined Chebyshev spectral collocation method with policy iteration, J. Comput. Appl. Math., 362 (2019), 41--54
-
[39]
K. Parand, A. R. Rezaei, A. Taghavi, Lagrangian method for solving Lane-Emden type equation arising in astrophysics on semi-infinite domains, Acta Astronautica, 67 (2010), 673--680
-
[40]
J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38 (2000), 1113--1133
-
[41]
J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin (2011)
-
[42]
G. Szegő, Orthogonal Polynomials, American Mathematical Society, Providence (1975)
-
[43]
M. Tatari, M. Haghighi, A generalized Laguerre-Legendre spectral collocation method for solving initial-boundary value problems, Appl. Math. Model., 38 (2014), 1351--1364
-
[44]
J. Valenciano, M. A. J. Chaplain, A Laguerre-Legendre spectral-element method for the solution of partial differential equations on infinite domains: Application to the diffusion of tumour angiogenesis factors, Math. Comput. Modelling, 41 (2005), 1171--1192
-
[45]
S. A. Yousefi, M. Behroozifar, M. Dehghan, Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials, Appl. Math. Model., 36 (2012), 945--963
-
[46]
L. W. Zhang, Y. J. Deng, K. M. Liew, An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40 (2014), 181--188