Solution of Newell-Whitehead-Segel equation by variational iteration method with He's polynomials
-
2109
Downloads
-
4573
Views
Authors
Muhammad Nadeem
- School of Mathematical Sciences , Dalian University of Technology, Dalian 116024, China.
Shao-Wen Yao
- School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China.
Nusrat Parveen
- Department of Social Sciences, Govt. College University Faisalabad, Layyah Campus, Layyah 31200, Pakistan.
Abstract
This article seeks to extend the variational iteration method (VIM) with He's polynomials for the approximate solution of nonlinear Newell-Whitehead-Segel equation (NWSE). Lagrange multiplier in correction functional is determined with the help of variational theory, and then homotopy perturbation method (HPM) is employed to dissolve the nonlinear terms. Thus a successful series is obtained with these iterations which are termed as He's polynomials. Result shows that this method is highly accurate and comes closer very quickly to the exact solution. We formulate three possible cases of NWSE to show the capability and ability of the present method. The valuable outcome discloses that the proposed strategy is very convenient, straightforward and can be utilized to linear and nonlinear problems.
Share and Cite
ISRP Style
Muhammad Nadeem, Shao-Wen Yao, Nusrat Parveen, Solution of Newell-Whitehead-Segel equation by variational iteration method with He's polynomials, Journal of Mathematics and Computer Science, 20 (2020), no. 1, 21--29
AMA Style
Nadeem Muhammad, Yao Shao-Wen, Parveen Nusrat, Solution of Newell-Whitehead-Segel equation by variational iteration method with He's polynomials. J Math Comput SCI-JM. (2020); 20(1):21--29
Chicago/Turabian Style
Nadeem, Muhammad, Yao, Shao-Wen, Parveen, Nusrat. "Solution of Newell-Whitehead-Segel equation by variational iteration method with He's polynomials." Journal of Mathematics and Computer Science, 20, no. 1 (2020): 21--29
Keywords
- NWSE
- VIM
- Lagrange multiplier
- HPM
MSC
References
-
[1]
A. Aasaraai, Analytic solution for Newell--Whitehead--Segel equation by differential transform method, Middle-East J. Sci. Res., 10 (2011), 270--273
-
[2]
I. Ahmad, H. Ilyas, Homotopy Perturbation Method for the nonlinear MHD Jeffery--Hamel blood flows problem, Appl. Numer. Math., 141 (2019), 124--132
-
[3]
N. Anjum, J.-H. He, Laplace transform: Making the variational iteration method easier, Appl. Math. Lett., 92 (2019), 134--138
-
[4]
B. Batiha, Numerical solution of Bratu--type equations by the variational iteration method, Hacet. J. Math. Stat., 39 (2010), 23--29
-
[5]
B. Batiha, M. S. M. Noorani, I. Hashim, Numerical solution of sine--Gordon equation by variational iteration method, Phys. Lett. A, 370 (2007), 437--440
-
[6]
J. Biazar, H. Ghazvini, He's variational iteration method for solving hyperbolic differential equations, Int. J. Nonlinear Sci. Numer. Simul., 8 (2007), 311--314
-
[7]
A. Ghorbani, M. Bakherad, A variational iteration method for solving nonlinear Lane--Emden problems, New Astronomy, 54 (2017), 1--6
-
[8]
J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178 (1999), 257--262
-
[9]
J.-H. He, Variational iteration method--a kind of non-linear analytical technique: some examples, Internat. J. Non-Linear Mech., 34 (1999), 699--708
-
[10]
J.-H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115--123
-
[11]
J.-H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73--79
-
[12]
J.-H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., 151 (2004), 287--292
-
[13]
J.-H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, 26 (2005), 695--700
-
[14]
J.-H. He, Addendum: new interpretation of homotopy perturbation method, Internat. J. Modern Phys. B, 20 (2006), 2561--2568
-
[15]
J.-H. He, Recent development of the homotopy perturbation method, Topol. Methods Nonlinear Anal., 31 (2008), 205--209
-
[16]
J.-H. He, Homotopy perturbation method with an auxiliary term, Abstr. Appl. Anal., 2012 (2012), 7 pages
-
[17]
J.-H. He, Homotopy perturbation method with two expanding parameters, Indian J. Phys., 88 (2014), 193--196
-
[18]
J.-H. He, Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272--276
-
[19]
J.-H. He, The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, J. Low Frequency Noise Vibr. Active Control, 2019 (2019), 12 pages
-
[20]
J.-H. He, H.-Y. Kong, R.-X. Chen, M. Hu, Q. Chen, Variational iteration method for Bratu--like equation arising in electrospinning, Carbohydrate Polymer, 105 (2014), 229--230
-
[21]
H. K. Jassim, Homotopy perturbation algorithm using Laplace transform for Newell--Whitehead--Segel equation, Int. J. Adv. Appl. Math. Mech., 2 (2015), 8--12
-
[22]
X.-X. Li, D. Tian, C.-H. He, J.-H. He, A fractal modification of the surface coverage model for an electrochemical arsenic sensor, Electrochimica Acta, 296 (2019), 491--493
-
[23]
Z.-J. Liu, M. Y. Adamu, E. Suleiman, J.-H. He, Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations, Therm. Sci., 21 (2017), 1843--1846
-
[24]
S. A. Manaa, An Approximate solution to the Newell--Whitehead--Segel equation by the Adomian decomposition method, Raf, J. Comput. Math., 8 (2011), 171--180
-
[25]
M. Nadeem, F. Q. Li, Modified Laplace Variational Iteration Method for Analytical Approach of Klein--Gordon and Sine--Gordon Equations, Iran. J. Sci. Technol. Trans. A Sci., 43 (2018), 1933--1940
-
[26]
M. Nadeem, F. Li, H. Ahmad, He's variational iteration method for solving non-homogeneous Cauchy Euler differential equations, Nonlinear Sci. Lett. A Math. Phys. Mech., 9 (2018), 231--237
-
[27]
M. Nadeem, F. Q. Li, H. Ahmad, Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients, Comput. Math. Appl., 78 (2019), 2052--2062
-
[28]
S. S. Nourazar, M. Soori, A. Nazari-Golshan, On the exact solution of Newell--Whitehead--Segel equation using the homotopy perturbation method, Aust. J. Basic Appl. Sci., 5 (2011), 1400--1411
-
[29]
J. Patade, S. Bhalekar, Approximate analytical solutions of Newell--Whitehead--Segel equation using a new iterative method, World J. Modell. Simul., 11 (2015), 94--103
-
[30]
A. Prakash, M. Kumar, He's variational iteration method for the solution of nonlinear Newell--Whitehead--Segel equation, J. Appl. Anal. Comput., 6 (2016), 738--748
-
[31]
P. Pue-on, Laplace Adomian Decomposition Method for Solving Newell--Whitehead--Segel Equation, Appl. Math. Sci. (Ruse), 7 (2013), 6593--6600
-
[32]
H. Saberi Najafi, S. A. Edalatpanah, Homotopy perturbation method for linear programming problems, Appl. Math. Model., 38 (2014), 1607--1611
-
[33]
M. Saravi, M. Hermann, D. Kaiser, Solution of Bratus equation by He's variational iteration method, Amer. J. Comput. Appl. Math., 3 (2013), 46--48
-
[34]
F. Shakeri, M. Dehghan, Inverse problem of diffusion equation by He's homotopy perturbation method, Physica Scripta, 75 (2007), 551--556
-
[35]
D.-H. Shou, The homotopy perturbation method for nonlinear oscillators, Comput. Math. Appl., 58 (2009), 2456--2459
-
[36]
Y. Wang, Q. Deng, Fractal derivative model for tsunami traveling, Fractals, 27 (2019), 3 pages
-
[37]
Q. Wang, X. Shi, J.-H. He, Z. B. Li, Fractal calculus and its application to explanation of biomechanism of polar bear hairs, Fractals, 26 (2018), 18 pages
-
[38]
Y. Wu, J.-H. He, Homotopy perturbation method for nonlinear oscillators with coordinate--dependent mass, Results Phys., 10 (2018), 270--271
-
[39]
D.-N. Yu, J.-H. He, A. G. Garcıa, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, J. Low Frequency Noise Vibr. Active Control, 2018 (2018), 11 pages
-
[40]
W. K. Zahra, W. A. Ouf, M. S. El-Azab, Cubic $B$-spline collocation algorithm for the numerical solution of Newell Whitehead Segel type equations, Electron. J. Math. Anal. Appl., 2 (2014), 81--100