Taylor's expansion for fractional matrix functions: theory and applications
-
1668
Downloads
-
4045
Views
Authors
Ahmad El-Ajou
- Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan.
- Department of Mathematics, Faculty of Science, Taibah University, Madina, KSA.
Abstract
In this paper, several aims and tasks have been accomplished that can be summarized in the following points. Firstly, we recover some nice results related to the convergence and radii of convergence for the matrix fractional power series formula. Secondly, the Frobenius norm approximations for the matrix fractional derivatives in Caputo sense and fractional integrals in Riemann-Liouville sense are presented. Thirdly, we present the general exact and numerical solutions of four important and interesting matrix fractional differential equations and a new computational technique is also applied for getting the general solutions of the non-linear case in Caputo sense. Finally, some illustrated examples and special cases are also given and considered to show our new approach.
Share and Cite
ISRP Style
Ahmad El-Ajou, Taylor's expansion for fractional matrix functions: theory and applications, Journal of Mathematics and Computer Science, 21 (2020), no. 1, 1--17
AMA Style
El-Ajou Ahmad, Taylor's expansion for fractional matrix functions: theory and applications. J Math Comput SCI-JM. (2020); 21(1):1--17
Chicago/Turabian Style
El-Ajou, Ahmad. "Taylor's expansion for fractional matrix functions: theory and applications." Journal of Mathematics and Computer Science, 21, no. 1 (2020): 1--17
Keywords
- Caputo fractional derivative
- Riemann-Liouville integral
- matrix Mittag-Leffler functions
- matrix fractional differential equations
MSC
References
-
[1]
Z. Al-Zhour, Efficient solutions of coupled matrix and matrix differential equations, Intell. Control Auto, 3 (2012), 12 pages
-
[2]
Z. A. A. Al-Zhour, The general (vector) solutions of such linear (coupled) matrix fractional differential equations by using Kronecker structures, Appl. Math. Comput., 232 (2014), 498--510
-
[3]
Z. A. A. Al-Zhour, New techniques for solving some matrix and matrix differential equations, Ain Shams Eng. J., 6 (2015), 347--354
-
[4]
Z. Al-Zhour, The general solutions of singular and non-singular matrix fractional time-varying descriptor systems with constant coefficient matrices in Caputo sense, Alexandaria Eng. J., 55 (2016), 1675--1681
-
[5]
Z. Al-Zuhiri, Z. Al-Zhour, K. Jaber, The exact solutions of such coupled linear matrix fractional differential equations of diagonal unknown matrices by using Hadamard product, J. Appl. Math. Phys., 4 (2016), 432--442
-
[6]
A. Atangana, J. J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 7 pages
-
[7]
K. Balachandran, J. Kokila, On the controllability of fractional dynamic systems, Int. J. Appl. Math. Comput. Sci., 22 (2012), 523--531
-
[8]
K. Balachandran, J. Kokila, J. J. Trujillo, Relative controllability of fractional dynamic systems with multiple delays in control, Comput. Math. Appl., 64 (2012), 3037--3045
-
[9]
A. Carpinteri, F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: Fractals and Fractional Calculus in Continuum Mechanics, 1997 (1997), 291--348
-
[10]
J. B. Cruz, C. I. Chen, Series Nash solution of two-person nonzero sum linear differential games, J. Optim. Theory Appl., 7 (1971), 240--257
-
[11]
M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci. (Ruse), 4 (2010), 1021--1032
-
[12]
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin (2008)
-
[13]
W. H. Deng, C. P. Li, Chaos Synchronization of the fractional Lu system, Phys. A, 353 (2005), 61--72
-
[14]
A. El-Ajou, O. Abu Arqub, M. Al-Smadi, A general form of the generalized Taylor's formula with some applications, Appl. Math. Comput., 256 (2015), 851--859
-
[15]
A. El-Ajou, O. Abu Arqub, S. Momani, Solving fractional two-point boundary value problems using continuous analytic method, Ain Shams Eng. J., 4 (2013), 539--547
-
[16]
A. El-Ajou, Z. Al-Zhour, M. Oqielat, S. Momani, T. Hayat, Series Solutions of Nonlinear Conformable Fractional KdV-Burgers Equation with Some Applications, Eur. Phys. J. Plus, 134 (2019), 11 pages
-
[17]
A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29 (2019), 12 pages
-
[18]
A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, Analytical numerical solutions of the fractional multi-pantograph system: Two attractive methods and comparisons, Results Phys., 14 (2019), 10 pages
-
[19]
A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester (1981)
-
[20]
I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Letter., 91 (2003), 12 pages
-
[21]
S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Solitons Fractals, 133 (2020), 13 pages
-
[22]
O. Heaviside, Electromagnetic theory, Chelsea, New York (1971)
-
[23]
R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991)
-
[24]
L. Jódar, H. Abou-Kandil, Kronecker products and coupled matrix Riccati differential systems, Linear Algebra Appl., 121 (1989), 39--51
-
[25]
A. Kadem, D. Baleanu, Fractional radiative transfer equation within Chebyshev spectral approach, Comput. Math. Appl., 59 (2010), 1865--1873
-
[26]
A. Kilicman, W. A. Ahmood, On matrix fractional differential equations, Adv. Mech. Eng., 9 (2017), 7 pages
-
[27]
A. Kilicman, Z. A. A. Al-Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187 (2007), 250--265
-
[28]
J. G. Lu, G. R. Chen, A note on the fractional-order Chen system, Chaos Solitons Fractals, 27 (2006), 685--688
-
[29]
R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1--104
-
[30]
J. R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons, Chichester (1999)
-
[31]
K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York (1993)
-
[32]
Z. M. Odibat, Analytic study on linear systems of fractional differential equations, Comput. Math. Appl., 59 (2010), 1171--1183
-
[33]
Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286--293
-
[34]
K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York (1974)
-
[35]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
-
[36]
C. Riccardo, D. Giovanni, F. Luigi, Fractional Order System: Modeling and Control Applications, World Scientific, London (2010)
-
[37]
B. Ross, Fractional Calculus and its Applications, Springer-Verlag, Berlin (1975)
-
[38]
Y. Rossikhin, M. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15--67
-
[39]
M. Shqair, A. El-Ajou, M. Nairat, Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Methods, Mathematics, 7 (2019), 20 pages
-
[40]
J. Wang, Y. Zhang, Network synchronization in a population of star-coupled fractional nonlinear oscillators, Phys. Lett. A, 374 (2010), 1464--1468