Positive solutions to a nonlinear eigenvalue problem
Volume 21, Issue 1, pp 18--22
http://dx.doi.org/10.22436/jmcs.021.01.02
Publication Date: March 18, 2020
Submission Date: September 11, 2019
Revision Date: February 06, 2020
Accteptance Date: February 19, 2020
-
1394
Downloads
-
3037
Views
Authors
Yong-Hui Zhou
- School of Mathematics and Statistics, HeXi University, Zhangye, Gansu 734000, P. R. China.
Abstract
In this paper, the existence of positive solutions to a nonlinear eigenvalue problem is obtained by Leray-Schauder fixed point theorem.
Share and Cite
ISRP Style
Yong-Hui Zhou, Positive solutions to a nonlinear eigenvalue problem, Journal of Mathematics and Computer Science, 21 (2020), no. 1, 18--22
AMA Style
Zhou Yong-Hui, Positive solutions to a nonlinear eigenvalue problem. J Math Comput SCI-JM. (2020); 21(1):18--22
Chicago/Turabian Style
Zhou, Yong-Hui. "Positive solutions to a nonlinear eigenvalue problem." Journal of Mathematics and Computer Science, 21, no. 1 (2020): 18--22
Keywords
- Existence
- positive solutions
- Leray-Schauder fixed point theorem
MSC
References
-
[1]
R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-line., 3 (1998), 9--14
-
[2]
R. I. Avery, A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42 (2001), 313--322
-
[3]
Z. B. Bai, The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal., 67 (2007), 1704--1709
-
[4]
C. Z. Bai, Triple positive solutions of three-point boundary value problems of fourth-order differential equations, Comput. Math. Appl., 56 (2008), 1364--1371
-
[5]
Z. B. Bai, Y. F. Wang, W. G. Ge, Triple positive solutions for a class of two-point boundary value problems, Electron. J. Differential Equations, 2004 (2004), 8 pages
-
[6]
J. R. Graef, L. J. Kong, B. Yang, Positive solutions of boundary value problems for discrete and continuous beam equations, J. Appl. Math. Comput., 41 (2013), 197--208
-
[7]
B. Liu, Positive solutions of fourth-order two-point boundary value problems, Appl. Math. Comput., 148 (2004), 407--420
-
[8]
J.-P. Sun, W.-T. Li, Y.-H. Zhao, Three positive solutions of a nonlinear three-point boundary value problem, J. Math. Anal. Appl., 288 (2003), 708--716
-
[9]
Y. P. Sun, X. P. Zhang, M. Zhao, Successive iteration of positive solutions for fourth-order two-point boundary value problems, Abstr. Appl. Anal., 2013 (2013), 8 pages
-
[10]
Y.-R. Yang, Triple positive solutions of a class of fourth-order two-point boundary value problems, Appl. Math. Lett., 23 (2010), 366--370