A novel approach to neutrosophic sets in UP-algebras
Volume 21, Issue 1, pp 78--98
http://dx.doi.org/10.22436/jmcs.021.01.08
Publication Date: March 26, 2020
Submission Date: November 04, 2019
Revision Date: January 21, 2020
Accteptance Date: February 10, 2020
-
1501
Downloads
-
3624
Views
Authors
Metawee Songsaeng
- Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
Aiyared Iampan
- Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
Abstract
The notion of neutrosophic sets in UP-algebras was introduced by Songsaeng and Iampan [M. Songsaeng, A. Iampan, Eur. J. Pure Appl. Math., \(\bf12\) (2019), 1382--1409]. In this paper, the notions of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are introduced, and several properties are investigated. Conditions for neutrosophic sets to be special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are provided. Relations between special neutrosophic UP-subalgebras (resp., special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, special neutrosophic strong UP-ideals) and their level subsets are considered.
Share and Cite
ISRP Style
Metawee Songsaeng, Aiyared Iampan, A novel approach to neutrosophic sets in UP-algebras, Journal of Mathematics and Computer Science, 21 (2020), no. 1, 78--98
AMA Style
Songsaeng Metawee, Iampan Aiyared, A novel approach to neutrosophic sets in UP-algebras. J Math Comput SCI-JM. (2020); 21(1):78--98
Chicago/Turabian Style
Songsaeng, Metawee, Iampan, Aiyared. "A novel approach to neutrosophic sets in UP-algebras." Journal of Mathematics and Computer Science, 21, no. 1 (2020): 78--98
Keywords
- UP-algebra
- special neutrosophic UP-subalgebra
- special neutrosophic near UP-filter
- special neutrosophic UP-filter
- special neutrosophic UP-ideal
- special neutrosophic strong UP-ideal
MSC
References
-
[1]
M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 12 pages
-
[2]
M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388--402
-
[3]
N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 16 (2018), 171--190
-
[4]
T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1--19
-
[5]
A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35--54
-
[6]
A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297--306
-
[7]
A. Iampan, Multipliers and near UP-filters of UP-algebras, J. Discrete Math. Sci. Cryptography, 2019 (2019), 14 pages
-
[8]
Y. B. Jun, Neutrosophic subalgebras of several types in $BCK/BCI$-algebras, Ann. Fuzzy Math. Inform., 14 (2017), 75--86
-
[9]
Y. B. Jun, F. Smarandache, H. Bordbar, Neutrosophic $\mathcal{N}$-structures applied to $BCK/BCI$-algebras, Inform., 8 (2017), 12 pages
-
[10]
Y. B. Jun, F. Smarandache, S. Z. Song, M. Khan, Neutrosophic positive implicative n-ideals in $BCK$-algebras, Axioms, 7 (2018), 13 pages
-
[11]
W. Kaijae, P. Poungsumpao, S. Arayarangsi, A. Iampan, UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras, Ital. J. Pure Appl. Math., 36 (2016), 667--692
-
[12]
B. Kesorn, K. Maimun, W. Ratbandan, A. Iampan, Intuitionistic fuzzy sets in UP-algebras, Ital. J. Pure Appl. Math., 34 (2015), 339--364
-
[13]
M. Khan, S. Anis, F. Smarandache, Y. B. Jun, Neutrosophic $\mathcal{N}$-structures and their applications in semigroups, Ann. Fuzzy Math. Inform., 14 (2017), 583--598
-
[14]
S. J. Kim, S. Z. Song, Y. B. Jun, Generalizations of neutrosophic subalgebras in $BCK/BCI$-algebras based on neutrosophic points, Neutrosophic Sets Syst., 20 (2018), 26--35
-
[15]
T. Klinseesook, S. Bukok, A. Iampan, Rough set theory applied to UP-algebras, J. Inf. Optim. Sci., 2019 (2019), 18 pages
-
[16]
C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54--57
-
[17]
A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403--409
-
[18]
A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17--25
-
[19]
F. Smarandache, A unifying field in logics: Neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability: Neutrosophic logic: neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth (1999)
-
[20]
F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287--297
-
[21]
J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739--756
-
[22]
M. Songsaeng, A. Iampan, $\mathcal{N}$}-fuzzy UP-algebras and its level subsets, J. Algebra Relat. Topics, 6 (2018), 1--24
-
[23]
M. Songsaeng, A. Iampan, Neutrosophic set theory applied to UP-algebras, Eur. J. Pure Appl. Math., 12 (2019), 1382--1409
-
[24]
S. Sripaeng, K. Tanamoon, A. Iampan, On anti $Q$-fuzzy UP-ideals and anti $Q$-fuzzy UP-subalgebras of UP-algebras, J. Inf. Optim. Sci., 39 (2018), 1095--1127
-
[25]
M. M. Takallo, H. Bordbar, R. A. Borzooei, Y. B. Jun, $BMBJ$-neutrosophic ideals in $BCK/BCI$-algebras, Neutrosophic Sets Syst., 27 (2019), 16 pages
-
[26]
K. Tanamoon, S. Sripaeng, A. Iampan, {$Q$}-fuzzy sets in UP-algebras, Songklanakarin J. Sci. Technol., 40 (2018), 9--29
-
[27]
N. Udten, N. Songseang, A. Iampan, Translation and density of a bipolar-valued fuzzy set in UP-algebras, Ital. J. Pure Appl. Math., 41 (2019), 469--496
-
[28]
H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Interval neutrosophic sets and logic: Theory and applications in computing, Hexis, Phoenix (2005)
-
[29]
L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 38--353