On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative
-
1445
Downloads
-
3268
Views
Authors
El-sayed El-hady
- Mathematics Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
- Basic Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia, 41522, Egypt.
Süleyman Öğrekçi
- Department of Mathematics, Faculty of Arts and Science, Amasya University, Amasya, Turkey.
Abstract
In this article, we study the stability problem of some fractional differential equations in the sense of Hyers-Ulam and Hyers-Ulam-Rassias based on some fixed point techniques. In this way, we improve and generalize some recent results by dropping some basic assumptions.
Share and Cite
ISRP Style
El-sayed El-hady, Süleyman Öğrekçi, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, Journal of Mathematics and Computer Science, 22 (2021), no. 4, 325--332
AMA Style
El-hady El-sayed, Öğrekçi Süleyman, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative. J Math Comput SCI-JM. (2021); 22(4):325--332
Chicago/Turabian Style
El-hady, El-sayed, Öğrekçi, Süleyman. "On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative." Journal of Mathematics and Computer Science, 22, no. 4 (2021): 325--332
Keywords
- Hyers-Ulam stability
- fractional differential equation
- fixed point theory
MSC
References
-
[1]
M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform., 26 (2011), 257--266
-
[2]
C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373--380
-
[3]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64--66
-
[4]
J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (1991), 729--732
-
[5]
Y. Başcı, A. Mısır, S. Öğrekçi, On the stability problem of differential equations in the sense of Ulam, Results Math., 75 (2020), 13 pages
-
[6]
Y. Başcı, A. Mısır, S. Öğrekçi, Hyers-Ulam-Rassias stability for Abel-Riccati type first-order differential equations, Gazi Univ. J. Sci., 32 (2019), 1238--1252
-
[7]
Y. Başcı, S. Öğrekçi, A. Mısır, On Hyers-Ulam stability for fractional differential equations including the new Caputo-Fabrizio fractional derivative, Mediterr. J. Math., 16 (2019), 14 pages
-
[8]
D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385--397
-
[9]
N. Brillouët-Belluot, J. Brzdek, K. Ciepliński, On some recent developments in Ulam's type stability, Abstr. Appl. Anal., 2012 (2012), 41 pages
-
[10]
J. Brzdęk, J. Chudziak, Z. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74 (2011), 6728--6732
-
[11]
J. Brzdęk, K. Ciepliński, A fixed point approach to the stability of functional equations in non-archimedean metric spaces, Nonlinear Anal., 74 (2011), 6861--6867
-
[12]
J. Brzdęk, E. El-hady, Z. Leśniak, Fixed-point theorem in classes of function with values in a dq-metric space, J. Fixed Point Theory Appl., 20 (2018), 16 pages
-
[13]
J. Brzdęk, E. El-hady, J. Schwaiger, Investigations on the Hyers-Ulam stability of generalized radical functional equations, Aequationes Math., 94 (2020), 575--593
-
[14]
K. Ciepliński, Applications of fixed point theorems to the Hyers-Ulam stability of functional equations--a survey, Ann. Funct. Anal., 3 (2012), 151--164
-
[15]
J. B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305--309
-
[16]
G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143--190
-
[17]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222--224
-
[18]
D. H. Hyers, G. Isac, T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston (1998)
-
[19]
S.-M. Jung, Hyers--Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135--1140
-
[20]
S.-M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007 (2007), 9 pages
-
[21]
S.-M. Jung, A fixed point approach to the stability of differential equations $\acute{y}=F(x,y)$, Bull. Malays. Math. Sci. Soc. (2), 33 (2010), 47--56
-
[22]
M. W. Michalski, Derivatives of noninteger order and their applications, Dissertationes Math. (Rozprawy Mat.), 1993 (1993), 47 pages
-
[23]
M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993), 259--270
-
[24]
M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., 14 (1997), 141--146
-
[25]
S. Öğrekçi, Stability of delay differential equations in the sense of Ulam on unbounded intervals, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9 (2019), 125--131
-
[26]
Z. Páles, Generalized stability of the Cauchy functional equation, Aequationes Math., 56 (1998), 222--232
-
[27]
T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297--300
-
[28]
T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 264--284 (2000),
-
[29]
L. Székelyhidi, Note on a stability theorem, Canad. Math. Bull., 25 (1982), 500--501
-
[30]
J. Tabor, J. Tabor, General stability of functional equations of linear type, J. Math. Anal. Appl., 328 (2007), 192--200
-
[31]
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publisheres, New York-London (1960)
-
[32]
J. R. Wang, L. L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2530--2538