Fractional Opial dynamic inequalities
-
1318
Downloads
-
2832
Views
Authors
A. G. Sayed
- Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
S. H. Saker
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
A. M. Ahmed
- Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
- Department of Mathematics, College of Science, Jouf University, Sakaka (2014), Kingdom of Saudi Arabia.
Abstract
In this paper, we will prove some new fractional dynamic inequalities on
time scales of Opial's type. The results will be proved by employing the
chain rule and Holder's inequality on fractional time scales. As a
special case of our results, when \(\alpha =1\), we will obtain several
well-known dynamic Opial inequalities on time scales.
Share and Cite
ISRP Style
A. G. Sayed, S. H. Saker, A. M. Ahmed, Fractional Opial dynamic inequalities, Journal of Mathematics and Computer Science, 22 (2021), no. 4, 363--380
AMA Style
Sayed A. G., Saker S. H., Ahmed A. M., Fractional Opial dynamic inequalities. J Math Comput SCI-JM. (2021); 22(4):363--380
Chicago/Turabian Style
Sayed, A. G., Saker, S. H., Ahmed, A. M.. "Fractional Opial dynamic inequalities." Journal of Mathematics and Computer Science, 22, no. 4 (2021): 363--380
Keywords
- Opial's inequality
- Holder's inequality
- time scales
- conformable fractinonal calculus
MSC
- 26A15
- 26D10
- 26D15
- 39A13
- 34A40
- 34N05
References
-
[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57--66
-
[2]
R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3--22
-
[3]
R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic Inequalities on Time Scales, Springer, Cham (2014)
-
[4]
A. M. Ahmed, G. AlNemer, M. Zakarya, H. M. Rezk, Some Dynamic Inequalities of Hilbert's Type, J. Funct. Spaces, 2020 (2020), 13 pages
-
[5]
A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for conformable fractional integrals, Asian J. Math. Comput. Res., 15 (2017), 205--212
-
[6]
N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93--98
-
[7]
K. Bogdan, B. Dyda, The best constant in a fractional Hardy inequality, Math. Nachr., 284 (2011), 629--638
-
[8]
M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equation with deviating arguments, Indag. Math. (N.S.), 29 (2018), 548--560
-
[9]
M. Bohner, B. Kaymakçalan, Opial inequalities on time scales, Ann. Polon. Math., 77 (2001), 11--20
-
[10]
M. Bohner, T. X. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445--1452
-
[11]
M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001)
-
[12]
M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Boston (2003)
-
[13]
Y.-M. Chu, M. A. Khan, T. Ali, S. S. Dragomir, Inequalities for $\alpha$-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 12 pages
-
[14]
S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18--56
-
[15]
M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443--451
-
[16]
V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York (2001)
-
[17]
B. Karpuz, B. Kaymakçalan, Ö. Öcalan, A generalization of Opial's inequality and applications to second order dynamic equations, Differ. Equ. Dyn. Syst., 18 (2010), 11--18
-
[18]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65--70
-
[19]
M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 112 (2018), 1033--1048
-
[20]
F. J. Martin-Reyes, E. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc., 106 (1989), 727--733
-
[21]
E. R. Nwaeze, D. F. M Torres, Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales, Arab. J. Math. (Springer), 6 (2017), 13--20
-
[22]
B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547--556
-
[23]
S. H. Saker, Some nonlinear dynamic inequalities on time scales and applications, J. Math. Inequal., 4 (2010), 561--579
-
[24]
S. H. Saker, Some Opial-type inequalities on time scales, Abstr. Appl. Anal., 2011 (2011), 19 pages
-
[25]
S. H. Saker, New inequalities of Opial's type on time scales and some of their applications, Discrete Dyn. Nat. Soc., 2012 (2012), 23 pages
-
[26]
S. H. Saker, M. R. Kenawy, G. AlNemer, M. Zakarya, Some Fractional Dynamic Inequalities of Hardy'sType Via Conformable Calculus, Mathematics, 8 (2020), 15 pages
-
[27]
M. Z. Sarikaya, H. Budak, New inequalities of Opial type for conformable fractional integrals, Turkish J. Math., 41 (2017), 1164--1173
-
[28]
M. Z. Sarikaya, H. Budak, Opial type inequalities for conformable fractional integrals, J. Appl. Anal., 25 (2019), 155--163
-
[29]
M. Z. Sarikaya, H. Yaldiz, H. Budak, Steffensen's integral inequality for conformable fractional integrals, Int. J. Anal. Appl., 15 (2017), 23--30
-
[30]
E. Set, A. Gözpınar, A. Ekinci, Hermite-Hadamard type inequalities via conformable fractional integrals, Acta Math. Univ. Comenian. (N.S.), 86 (2017), 309--320
-
[31]
H. M. Srivastava, K.-L. Tseng, S.-J. Tseng, J.-C. Lo, Some weighted Opial-type inequalities on time scale, Taiwanese J. Math., 14 (2010), 107--122
-
[32]
F. Usta, M. Z. Sarikaya, Some improvements of conformable fractional integral inequalities, Int. J. Anal. Appl., 14 (2017), 162--166
-
[33]
F.-H. Wong, W.-C. Lin, S.-L. Yu, C.-C. Yeh, Some generalizations of Opial's inequalities on time scales, Taiwanese J. Math., 12 (2008), 463--471
-
[34]
C. Yildiz, M. E. Ozdemir, H. Kavurmacı Onelan, Fractional integral inequalities for different functions, New Trends Math. Sci., 3 (2015), 110--117