Degenerate polyexponential-Genocchi numbers and polynomials
-
1321
Downloads
-
3798
Views
Authors
Waseem A. Khan
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia.
Aysha Khan
- Department of Mathematics, College of Arts and Science-Wadi Al dawasir, Prince Sattam Bin Abdulaziz University, Riyadh region 11991, Saudi Arabia.
Idrees A. Khan
- Department of Mathematics, Faculty of Science, Integral University, Lucknow 226026, India.
Abstract
Recently, Kim et al. in [T. Kim, D. S. Kim, H. Y. Kim, L.-C. Jang, Informatica, \(\bf 3\) (2020), 8 pages] studied the degenerate poly-Bernoulli numbers and polynomials which are defined by using the polylogarithm function. In this paper, we study the degenerate polyexponential-Genocchi polynomials and numbers arising from polyexponential function and derive their explicit expressions and some identity involving them. In the final section, we introduce degenerate unipoly-Genocchi polynomials attached to an arithmetic function, by using polylogarithm function and investigate some identities for those polynomials.
Share and Cite
ISRP Style
Waseem A. Khan, Aysha Khan, Idrees A. Khan, Degenerate polyexponential-Genocchi numbers and polynomials, Journal of Mathematics and Computer Science, 22 (2021), no. 4, 381--391
AMA Style
Khan Waseem A., Khan Aysha, Khan Idrees A., Degenerate polyexponential-Genocchi numbers and polynomials. J Math Comput SCI-JM. (2021); 22(4):381--391
Chicago/Turabian Style
Khan, Waseem A., Khan, Aysha, Khan, Idrees A.. "Degenerate polyexponential-Genocchi numbers and polynomials." Journal of Mathematics and Computer Science, 22, no. 4 (2021): 381--391
Keywords
- Polylogarithm function
- degenerate poly-Bernoulli polynomials
- degenerate poly-Genocchi polynomials
- unipoly function
MSC
References
-
[1]
M. Acikgoz, U. Duran, Unified degenerate central Bell polynomials, J. Math. Anal., 11 (2020), 18--33
-
[2]
S. Araci, Novel identities for $q$-Genocchi numbers and polynomials, J. Funct. Spaces Appl., 2012 (2012), 13 pages
-
[3]
S. Araci, Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus, Appl. Math. Comput., 233 (2014), 599--607
-
[4]
S. Araci, M. Acikgoz, E. Sen, On the von Staudt-Clausen's theorem associated with $q$-Genocchi numbers, Appl. Math. Comput., 247 (2014), 780--785
-
[5]
L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel), 7 (1956), 28--33
-
[6]
L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51--88
-
[7]
D. V. Dolgy, L.-C. Jang, D.-S. Kim, T.-K. Kim, J.-J. Seo, Differential equations associated with higher-order Bernoulli numbers of the second kind revisited, J. Anal. Appl., 14 (2016), 107--121
-
[8]
U. Duran, M. Acikgoz, On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials, Iran. J. Math. Sci. Inf., 21 (2020), 243--257
-
[9]
G. H. Hardy, On the Zeroes Certain Classes of Integral Taylor Series: Part I. On the Integral FunctionFormula, Proc. London Math. Soc. (2), 2 (1905), 332--339
-
[10]
G. H. Hardy, On the zeroes of certain classes of integral Taylor series: Part II. On the integral function formula and other similar functions, Proc. London Math. Soc. (2), 2 (1905), 401--431
-
[11]
H. Haroon, W. A. Khan, Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials, Commun. Korean. Math. Soc., 33 (2018), 651--669
-
[12]
M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, 9 (1997), 221--228
-
[13]
W. A. Khan, A note on degenerate Hermite poly-Bernoulli numbers and polynomials, J. Class. Anal., 8 (2016), 65--76
-
[14]
W. A. Khan, Degenerate Hermite-Bernoulli numbers and polynomials of the second kind, Prespacetime J., 7 (2016), 1297--1305
-
[15]
W. A. Khan, A new class of degenerate Frobenius-Euler Hermite polynomials, Adv. Stud. Contemp. Math., 30 (2018), 567--576
-
[16]
W. A. Khan, M. Ahmad, Partially degenerate poly-Bernoulli polynomials, Adv. Stud. Contemp. Math., 28 (2018), 487--496
-
[17]
W. A. Khan, H. Haroon, Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials, SpringerPlus, 5 (2016), 1--21
-
[18]
W. A. Khan, I. A. Khan, M. Ali, Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter, Stud. Univ. Babes-Bolyai Math., 65 (2020), 3--15
-
[19]
W. A. Khan, K. S. Nisar, U. Duran, M. Acikgoz, S. Araci, Multifarious implicit summation formulae of Hermite-Based poly-Daehee polynomials, Appl. Math. Inf. Sci., 12 (2018), 305--310
-
[20]
T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319--331
-
[21]
T. Kim, W. A. Khan, S. K. Sharma, M. Ghayasuddin, A note on parametric kinds of the degenerate poly-Bernoulli and poly-Genocchi polynomials, Symmetry, 12 (2020), 16 pages
-
[22]
D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci. (Ruse), 7 (2013), 5969--5976
-
[23]
T. Kim, D. S. Kim, Degenerate Laplace Transform and Degenerate Gamma Function, Russ. J. Math. Phys., 24 (2017), 241--248
-
[24]
D. S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys., 26 (2019), 40--49
-
[25]
T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 15 pages
-
[26]
T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon, Some identities on generalized degenerate Genocchi and Euler numbers, Informatica, 31 (2020), 42--51
-
[27]
T. Kim, D. S. Kim, H. Y. Kim, L.-C. Jang, Degenerate poly-Bernoulli numbers and polynomials, Informatica, 3 (2020), 8 pages
-
[28]
T. Kim, D. S. Kim, H. Y. Kim, S.-S. Pyo, $\lambda$-analogues of Stirling polynomials of the first kind and their applications, J. Inequal. Appl., 2019 (2019), 14 pages
-
[29]
D. S. Kim, T. Kim, J. Kwon, H. Lee, A note on $\lambda$-Bernoulli numbers of the second kind, Adv. Stud. Contemp. Math. (Kyungshang), 30 (2020), (in press)
-
[30]
C. S. Ryoo, W. A. Khan, On two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials, Mathematics, 8 (2020), 18 pages
-
[31]
S. K. Sharma, W. A. Khan, C. S. Ryoo, A parametric kind of the degenerate Fubini numbers and polynomials, Mathematics, 8 (2020), 13 pages
-
[32]
Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 27 (2017), 199--212