Essentiality and fixed point results for Eilenberg-Montgomery type maps
-
1249
Downloads
-
2758
Views
Authors
Donal O'Regan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.
Abstract
In this paper we establish topological transversality theorems so in particular
general Leray-Schauder type alternatives and general Furi-Pera type results for Eilenberg-Montgomery type maps.
Share and Cite
ISRP Style
Donal O'Regan, Essentiality and fixed point results for Eilenberg-Montgomery type maps, Journal of Mathematics and Computer Science, 22 (2021), no. 4, 392--398
AMA Style
O'Regan Donal, Essentiality and fixed point results for Eilenberg-Montgomery type maps. J Math Comput SCI-JM. (2021); 22(4):392--398
Chicago/Turabian Style
O'Regan, Donal. "Essentiality and fixed point results for Eilenberg-Montgomery type maps." Journal of Mathematics and Computer Science, 22, no. 4 (2021): 392--398
Keywords
- Eilenberg-Montgomery maps
- essential maps
- Leray-Schauder alternatives
- continuation theory
MSC
References
-
[1]
S. Eilenberg, D. Montgomery, Fixed point results for multi--valued transformations, Amer. J. Math., 68 (1946), 214--222
-
[2]
R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa (1989)
-
[3]
P. M. Fitzpartrick, W. V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pac. J. Math., 54 (1974), 12--23
-
[4]
M. Furi, P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Pol. Math., 47 (1987), 331--346
-
[5]
L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht (1999)
-
[6]
A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), 983--985
-
[7]
A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York (2003)
-
[8]
D. O'Regan, Fixed point theory on extension type spaces on topological spaces, Fixed Point Theory and Applications, 1 (2014), 13--20
-
[9]
D. O'Regan, Some general theorems for compact acyclic maps, Mathematics, 7 (2019), 11 pages
-
[10]
D. O'Regan, A topological coincidence theory for multifunctions via homotopy, Mathematics, 8 (2020), 8 pages