Spaces of neutrosophic \(\lambda\)-statistical convergence sequences and their properties
-
1744
Downloads
-
3000
Views
Authors
Vakeel A. Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Hira Fatima
- Department of Institute of Applied Sciences, Mangalayatan University-202001, India.
Mohammad Daud Khan
- Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Ayaz Ahamd
- Department of Mathematics, National Institute of Technology, Patna, India.
Abstract
In this paper, we use the notion of \(\lambda\)-statistical convergence in order to generalize these concepts. We establish some inclusion relations between them. We define the statistical convergence and \(\lambda\)-statistical convergence in neutrosophic normed space. We give the \(\lambda\)-statistically Cauchy sequence in neutrosophic normed space and present the \(\lambda\)-statistically completeness in connection with a neutrosophic normed space. Some interesting examples are also displayed here in support of our definitions and results.
Share and Cite
ISRP Style
Vakeel A. Khan, Hira Fatima, Mohammad Daud Khan, Ayaz Ahamd, Spaces of neutrosophic \(\lambda\)-statistical convergence sequences and their properties, Journal of Mathematics and Computer Science, 23 (2021), no. 1, 1--9
AMA Style
Khan Vakeel A., Fatima Hira, Khan Mohammad Daud, Ahamd Ayaz, Spaces of neutrosophic \(\lambda\)-statistical convergence sequences and their properties. J Math Comput SCI-JM. (2021); 23(1):1--9
Chicago/Turabian Style
Khan, Vakeel A., Fatima, Hira, Khan, Mohammad Daud, Ahamd, Ayaz. "Spaces of neutrosophic \(\lambda\)-statistical convergence sequences and their properties." Journal of Mathematics and Computer Science, 23, no. 1 (2021): 1--9
Keywords
- \(t\)-norm
- \(t\)-conorm
- neutrosophic normed space
- statistical convergence
- \(\lambda\)-statistical convergence
- \(\lambda\)-statistical Cauchy
MSC
References
-
[1]
K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg (1999)
-
[2]
T. Bera, N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Infor. Eng., 9 (2017), 299--324
-
[3]
J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194--198
-
[4]
A. Esi, Asymptotically $\lambda$-invariant statistical equivalent sequences of fuzzy numbers, Math. Sci. (Springer), 6 (2012), 5 pages
-
[5]
A. Esi, N. Braha, On asymptotically $\lambda$-statistical equivalent sequences of interval numbers, Acta Sci. Tech., 35 (2013), 515--520
-
[6]
A. Esi, B. Hazarika, $\lambda$-ideal convergence in intuitionistic fuzzy $2$-normed linear space, J. Intell. Fuzzy Systems, 24 (2013), 725--732
-
[7]
M. Et, M. Çınar, M. Karakaş, On $\lambda$-statistical convergence of order $\alpha$ of sequences of function, J. Inequal. Appl., 2013 (2013), 8 pages
-
[8]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241--244
-
[9]
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301--314
-
[10]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395--399
-
[11]
E. Kolk, On strong boundedness and summability with respect to a sequence of modulii, Acta Comment. Univ. Tartu, 960 (1993), 41--50
-
[12]
K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 18 (1942), 535--537
-
[13]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039--1046
-
[14]
R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331--344
-
[15]
F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287--297
-
[16]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338--353