Some new results for Horn's hypergeometric functions \(\Gamma_{1}\) and \(\Gamma_{2}\)
-
1332
Downloads
-
2530
Views
Authors
Ayman Shehata
- Department of Mathematics, College of Science and Arts, Qassim University, Unaizah, Qassim, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.
Shimaa I. Moustafa
- Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.
Abstract
The object of the present work is to deduce several important developments in various recursion relations, relevant differential recursion formulas, infinite summation formulas, integral representations, and integral operators for Horn's hypergeometric functions \(\Gamma_{1}\) and \(\Gamma_{2}\).
Share and Cite
ISRP Style
Ayman Shehata, Shimaa I. Moustafa, Some new results for Horn's hypergeometric functions \(\Gamma_{1}\) and \(\Gamma_{2}\), Journal of Mathematics and Computer Science, 23 (2021), no. 1, 26--35
AMA Style
Shehata Ayman, Moustafa Shimaa I., Some new results for Horn's hypergeometric functions \(\Gamma_{1}\) and \(\Gamma_{2}\). J Math Comput SCI-JM. (2021); 23(1):26--35
Chicago/Turabian Style
Shehata, Ayman, Moustafa, Shimaa I.. "Some new results for Horn's hypergeometric functions \(\Gamma_{1}\) and \(\Gamma_{2}\)." Journal of Mathematics and Computer Science, 23, no. 1 (2021): 26--35
Keywords
- Horn's functions
- recursion formulas
- infinite summation formulas
- integral operators
MSC
References
-
[1]
M. A. Abul-Ez, K. A. Sayyed, On integral operator sets of polynomials of two complex variables, Simon Stevin, 64 (1990), 157--167
-
[2]
Y. A. Brychkov, Reduction formulas for the Appell and Humbert functions, Integral Transforms Spec. Funct., 28 (2017), 22--38
-
[3]
Y. A. Brychkov, N. Saad, On some formulas for the Appell function $F_{1}(a, b, b'; c, c'; w, z)$, Integral Transforms Spec. Funct., 23 (2012), 793--802
-
[4]
Y. A. Brychkov, N. Saad, On some formulas for the Appell function $F_{2}(a, b, b'; c, c'; w, z)$, Integral Transforms Spec. Funct., 25 (2014), 111--123
-
[5]
Y. A. Brychkov, N. Saad, On some formulas for the Appell function $F_{3}(a, b, b'; c, c'; w, z)$, Integral Transforms Spec. Funct., 26 (2015), 910--923
-
[6]
Y. A. Brychkov, N. Saad, On some formulas for the Appell function $F_{4}(a, b; c, c'; w, z)$, Integral Transforms Spec. Funct., 28 (2015), 629--644
-
[7]
Y. A. Brychkov, N. V. Savischenko, On some formulas for the Horn functions $H_{1}(a, b, c; d; w, z)$ and $H_{1}^{(c)}(a, b; d; w, z)$, Integral Transforms Spec. Funct., 31 (2020), 1--17
-
[8]
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill Book Company, New York-Toronto-London (1953)
-
[9]
J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann., 105 (1931), 381--407
-
[10]
J. A. Mullen, The differential recursion formulae for Appell's hypergeometric functions of two variables, SIAM J. Appl. Math., 14 (1966), 1152--1163
-
[11]
S. O. Opps, N. Saad, H. M. Srivastava, Some reduction and transformation formulas for the Appell's hypergeometric function $F_{2}$, J. Math. Anal. Appl., 302 (2005), 180--195
-
[12]
S. O. Opps, N. Saad, H. M. Srivastava, Recursion formulas for Appell hypergeometric function $F_{2}$ with some applications to radiation field problems, Appl. Math. Comput., 207 (2009), 545--558
-
[13]
V. Sahai, A. Verma, Recursion formulas for multivariable hypergeometric functions, Asian-Eur. J. Math., 8 (2015), 50 pages
-
[14]
V. Sahai, A. Verma, Recursion formulas for Exton's triple hypergeometric functions, Kyungpook Math. J., 56 (2016), 473--506
-
[15]
V. Sahai, A. Verma, Recursion formulas for Srivastava's general triple hypergeometric functions, Asian-Eur. J. Math., 9 (2016), 17 pages
-
[16]
V. Sahai, A. Verma, Recursion formulas for the Srivastava-Daoust and related multivariable hypergeometric functions, Asian-Eur. J. Math., 9 (2016), 35 pages
-
[17]
R. Şahin, Recursion formulas for Srivastava hypergeometric functions, Math. Slovaca, 65 (2015), 1345--1360
-
[18]
R. Şahin, S. Rıdha Shakor Agha, Recursion formulas for $G_1$ and $G_2$ Horn hypergeometric functions, Miskolc Math. Notes, 16 (2015), 1153--1162
-
[19]
K. A. M. Sayyed, Basic Sets of Polynomials of two Complex Variables and Convergence Propertiess, Ph.D. Thesis (Assiut University), Egypt (1975)
-
[20]
B. L. Sharma, Some formulae for Appell functions, Proc. Cambridge Philos. Soc., 67 (1970), 613--618
-
[21]
H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Ltd., Chichester (1985)
-
[22]
H. M. Srivastava, H. L. Manocha, A treatise on generating functions, John Wiley & Sons, New York (1984)
-
[23]
H. M. Srivastava, R. Şahin, O. Yağci, A family of incomplete Hurwitz-Lerch zeta functions of two variables, Miskolc Math. Notes, 21 (2020), 401--415
-
[24]
X. X. Wang, Recursion formulas for Appell functions, Integral Transforms Spec. Funct., 23 (2012), 421--433