Finding Laplace transform using difference equations
Volume 23, Issue 1, pp 75--79
http://dx.doi.org/10.22436/jmcs.023.01.08
Publication Date: October 02, 2020
Submission Date: July 22, 2020
Revision Date: September 05, 2020
Accteptance Date: September 15, 2020
-
2324
Downloads
-
2710
Views
Authors
Rami Al Ahmad
- Mathematics Department, Yarmouk University, Irbid 21163, Jordan.
Abstract
In this paper, we extend the properties of forward and backward difference operators to continuous variables. We construct continuous solutions, with jump discontinues resulting from using floor functions, for difference equations. As an application for these properties, we find the inverse Laplace transform of functions which have the form \(\frac{F(s)}{a+be^{ct}}\).
Share and Cite
ISRP Style
Rami Al Ahmad, Finding Laplace transform using difference equations, Journal of Mathematics and Computer Science, 23 (2021), no. 1, 75--79
AMA Style
Ahmad Rami Al, Finding Laplace transform using difference equations. J Math Comput SCI-JM. (2021); 23(1):75--79
Chicago/Turabian Style
Ahmad, Rami Al. "Finding Laplace transform using difference equations." Journal of Mathematics and Computer Science, 23, no. 1 (2021): 75--79
Keywords
- Laplace transform
- difference operators
- difference equations
MSC
References
-
[1]
R. AlAhmad, A Hilbert space on left-definite Sturm-Liouville difference equations, Int. J. Appl. Math., 27 (2014), 163--170
-
[2]
R. AlAhmad, Laplace transform of the product of two functions, Ital. J. Pure Appl. Math., 2020 (2020), 800--804
-
[3]
S. Al-Ahmad, M. Mamat, R. Al-Ahmad, Finding Differential Transform Using Difference Equations, IAENG Int. J. Appl. Math., 50 (2020), 127--132
-
[4]
S. Al-Ahmad, M. Mamat, R. Al-Ahmad, I. M. Sulaiman, P. L. Ghazali, M. A. Mohamed, On New Properties of Differential Transform via Difference Equations, Int. J. Eng. Tech., 7 (2018), 321--324
-
[5]
R. AlAhmad, R. Weikard, On inverse problems for left-definite discrete Sturm-Liouville equations, Oper. Matrices, 7 (2013), 35--70
-
[6]
R. G. Buschman, A substitution theorem for the Laplace transformation and its generalization to transformations with symmetric kernel, Pacific J. Math., 7 (1957), 1529--1533
-
[7]
R. G. Buschman, An integral transformation relation, Proc. Amer. Math. Soc., 9 (1958), 956--958
-
[8]
W. Rudin, Real and complex analysis, Third ed., McGraw-Hill Book Co., New York (1986)
-
[9]
J. L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag, New York (1999)