Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices
Volume 24, Issue 1, pp 1--9
http://dx.doi.org/10.22436/jmcs.024.01.01
Publication Date: November 26, 2020
Submission Date: October 10, 2020
Revision Date: November 06, 2020
Accteptance Date: November 11, 2020
-
1729
Downloads
-
2713
Views
Authors
Ch. Santhi Sundar Raj
- Department of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, India.
K. Ramanuja Rao
- Deaprtment of Mathematics, Fiji National Uniersity, Lautoka, FIJI.
B. Subrahmanyam
- Department of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, India.
Abstract
The concept of weak prime \(\mathtt{L}\)--fuzzy filter of a semilattice \(S\) is introduced and example are given. A characterization of weak prime \(\mathtt{L}\)--fuzzy filters is established and prime filters of \(S\) are identified with weak prime \(\mathtt{L}\)--fuzzy filters. Also, minimal weak prime \(\mathtt{L}\)--fuzzy filters are characterized.
Share and Cite
ISRP Style
Ch. Santhi Sundar Raj, K. Ramanuja Rao, B. Subrahmanyam, Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices, Journal of Mathematics and Computer Science, 24 (2022), no. 1, 1--9
AMA Style
Raj Ch. Santhi Sundar, Rao K. Ramanuja, Subrahmanyam B., Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices. J Math Comput SCI-JM. (2022); 24(1):1--9
Chicago/Turabian Style
Raj, Ch. Santhi Sundar, Rao, K. Ramanuja, Subrahmanyam, B.. "Weak prime \(\mathtt{L}\)--fuzzy filters of semilattices." Journal of Mathematics and Computer Science, 24, no. 1 (2022): 1--9
Keywords
- Bounded semilattice
- \(\mathtt{L}\)--fuzzy filter
- prime \(\mathtt{L}\)--fuzzy filter
- weak prime \(\mathtt{L}\)--fuzzy filter
- frame
MSC
References
-
[1]
J. A. Goguen, $L$-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145--174
-
[2]
N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Systems, 5 (1981), 203--215
-
[3]
W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133--139
-
[4]
D. S. Malik, J. N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets Systems, 45 (1992), 245--251
-
[5]
T. K. Mukherjee, M. K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets and Systems, 21 (1987), 99--104
-
[6]
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512--517
-
[7]
Ch. Santhi Sundar Raj, B. Subrahmanyam, G. Sujatha, S. Nageswara Rao, L-fuzzy ideals of Semilattices, Int. J. Math. Trends Tech., 66 (2020), 160--175
-
[8]
Ch. Santhi Sundar Raj, B. Subrahmanyam, U. M. Swamy, Fuzzy Filters of Meet-Semilattices, Int. J. Math. Appl., 7 (2019), 67--76
-
[9]
Ch. Santhi Sundar Raj, B. Subrahmanyam, U. M. Swamy, Prime L-fuzzy filters of a Semilattice, Ann. Fuzzy Math. Inform., 20 (2020), 79--87
-
[10]
U. M. Swamy, K. L. N. Swamy, Fuzzy Prime Ideals of Rings, J. Math. Anal. Appl., 134 (1988), 94--103
-
[11]
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338--353