Some properties of generalized \((s,k)\)-Bessel function in two variables
-
1374
Downloads
-
3132
Views
Authors
R. S. Ali
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
S. Mubeen
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
K. S. Nisar
- Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser, 11991, Prince Sattam bin Abdulaziz University, Kingdom of Saudi Arabia.
S. Araci
- Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey.
G. Rahman
- Department of Mathematics and Statistics , Hazara University, Mansehra, Pakistan.
Abstract
The devotion of this paper is to study the Bessel function of two variables
in \(k\)-calculus. we discuss the generating function of \(k\)-Bessel function
in two variables and develop its relations. After this we introduce the
generalized \((s,k)\)-Bessel function of two variables which help to develop
its generating function. The \(s\)-analogy of \(k\)-Bessel function in two
variables is also discussed. Some recurrence relations of the generalized \(
(s,k)\)-Bessel function in two variables are also derived.
Share and Cite
ISRP Style
R. S. Ali, S. Mubeen, K. S. Nisar, S. Araci, G. Rahman, Some properties of generalized \((s,k)\)-Bessel function in two variables, Journal of Mathematics and Computer Science, 24 (2022), no. 1, 10--21
AMA Style
Ali R. S., Mubeen S., Nisar K. S., Araci S., Rahman G., Some properties of generalized \((s,k)\)-Bessel function in two variables. J Math Comput SCI-JM. (2022); 24(1):10--21
Chicago/Turabian Style
Ali, R. S., Mubeen, S., Nisar, K. S., Araci, S., Rahman, G.. "Some properties of generalized \((s,k)\)-Bessel function in two variables." Journal of Mathematics and Computer Science, 24, no. 1 (2022): 10--21
Keywords
- \(k\)-Bessel function
- generalized \((s,k)\)-Bessel function
- generalized \((s,k)\)-Bessel function in two variables
MSC
References
-
[1]
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 2017 (2017), 10 pages
-
[2]
R. Diaz, E. Pariguan, On hypergeometric functions and pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179--192
-
[3]
R. Diaz, C. Teruel, $q,k$-Generalized Gamma and Beta Functions, J. Nonlinear Math. Phys., 12 (2008), 118--134
-
[4]
H. Exton, $q$-Hypergeometric Functions and Applications, Halstead Press, New York (1983)
-
[5]
G. Farid, G.-M. Habibullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471--482
-
[6]
G. Farid, A. Ur Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79--86
-
[7]
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (1990)
-
[8]
K. S. Gehlot, Differential Equation of $k$-Bessel's Function and its Properties, Nonlinear Anal. Differ. Equ., 2 (2014), 61--67
-
[9]
C.-J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 9 pages
-
[10]
S. Iqbal, S. Mubeen, M. Tomar, On Hadamard $k$-fractional integrals, J. Fract. Calc. Appl., 9 (2019), 255--267
-
[11]
F. H. Jakson, The Application of Basic Numbers to Bessel's and Legendre's Functions, Proc. London Math. Soc. (2), 2 (1905), 192--220
-
[12]
C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653--660
-
[13]
V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum, 5 (2010), 1613--1617
-
[14]
S. Li, Y. Dong, $k$-Hypergeometric series solutions to one type of non-homogeneous $k$-hypergeometric equations, Symmetry, 2019 (2019), 11 pages
-
[15]
M. Mansour, Determining the $k$-generalized gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037--1042
-
[16]
F. Merovci, Power product inequalities for the $\Gamma_k$ function, Int. J. Math. Anal. (Ruse), 4 (2010), 1007--1012
-
[17]
S. Mubeen, Solution of some integral equations involving confluen $k$-hypergeometric functions, Appl. Math., 4 (2013), 9--11
-
[18]
S. Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum, 7 (2012), 203--207
-
[19]
S. Mubeen, S. Iqbal, Gruss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 2016 (2016), 13 pages
-
[20]
S. Mubeen, S. Iqbal, Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequal. Spec. Funct., 8 (2017), 107--118
-
[21]
S. Mubeen, C. G. Kokologiannaki, G. Rahman, M. Arshad, Z. Iqbal, Properties of generalized hypergeometric $k$-functions via $k$-fractional calculus, Far East J. Appl. Math., 96 (2017), 351--372
-
[22]
S. Mubeen, M. Naz, A. Rehman, G. Rahman, Solutions of $k$-hypergeometric differential equations, J. Appl. Math., 2014 (2014), 13 pages
-
[23]
S. Mubeen, A. Rehman, A Note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inf. Math. Sci., 6 (2014), 93--107
-
[24]
K. S. Nisar, G. Rahman, J. S. Choi, S. Mubeen, M. Arshad,, Certain Gronwall type inequalities associated with Riemann-Liouville $k$-and hadamard $k$-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249--263
-
[25]
F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized $k$-fractional conformable integrals and related inequalities, AIMS Math., 4 (2019), 343--358
-
[26]
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev Type for conformable $k$-Fractional integral operators, Symmetry, 2018 (2018), 16 pages
-
[27]
G. Rahman, M. Arshad, S. Mubeen, Some results on generalized hypergeometric $k$-functions, Bull. Math. Anal. Appl., 8 (2016), 66--77
-
[28]
G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable $k$-fractional integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 9 pages
-
[29]
G. Rahman, S. Mubeen, K. S. Nisar, On generalized $k$-fractional derivative operator, AIMS Math., 5 (2019), 1936--1945
-
[30]
E. D. Rainville, Special functions, Macmillan Co., New York (1960)
-
[31]
M. Samraiz, E. Set, M. Hasnain, G. Rahman, On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 15 pages
-
[32]
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 10 pages
-
[33]
R. F. Swarthow, An Addition Theorem and Some Product Formulas for the Hahn-Exton $q$-Bessel Functions, Canad. J. Math., 44 (1992), 867--878
-
[34]
A. Tanguria, R. Sharma, Advanced $q$-Bessel Function of Two Variables, Int. J. Sci. Eng. Res., 5 (2014), 2229--5518
-
[35]
M. Tomar, S. Mubeen, J. S. Choi, Certain inequalities associated with Hadamard $k$-fractional integral operators, J. Inequal. Appl., 2016 (2016), 14 pages