On right chain ordered semihypergroups
Volume 24, Issue 1, pp 59--72
http://dx.doi.org/10.22436/jmcs.024.01.06
Publication Date: December 24, 2020
Submission Date: October 29, 2020
Revision Date: November 25, 2020
Accteptance Date: December 02, 2020
-
1234
Downloads
-
2796
Views
Authors
Pairote Yiarayong
- Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
Bijan Davvaz
- Department of Mathematics , Yazd University, Yazd, Iran.
Ronnason Chinram
- Division of Computational Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
Abstract
The purposes of this paper are to introduce generalizations of the right chain ordered semigroups to the context of the right chain ordered semihypergroups. Furthermore, we present the concepts of prime, completely prime, semiprime, and completely semiprime right hyperideals of ordered semihypergroups. We also introduce the idea of associated prime right hyperideals. Moreover, we give some characterizations of prime, completely prime, semiprime, and completely semiprime right hyperideals of ordered semihypergroups. Finally, we obtain necessary and sufficient prime right hyperideal conditions to be a semiprime right hyperideal.
Share and Cite
ISRP Style
Pairote Yiarayong, Bijan Davvaz, Ronnason Chinram, On right chain ordered semihypergroups, Journal of Mathematics and Computer Science, 24 (2022), no. 1, 59--72
AMA Style
Yiarayong Pairote, Davvaz Bijan, Chinram Ronnason, On right chain ordered semihypergroups. J Math Comput SCI-JM. (2022); 24(1):59--72
Chicago/Turabian Style
Yiarayong, Pairote, Davvaz, Bijan, Chinram, Ronnason. "On right chain ordered semihypergroups." Journal of Mathematics and Computer Science, 24, no. 1 (2022): 59--72
Keywords
- Ordered semihypergroup
- prime right hyperideal
- completely prime right hyperideal
- semiprime right hyperideal
- completely semiprime right hyperideal
MSC
References
-
[1]
T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 33 (2014), 425--432
-
[2]
T. Changphas, P. Luangchaisri, R. Mazurek, On right chain ordered semigroups, Semigroup Forum, 96 (2018), 523--535
-
[3]
B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, European J. Combin., 44 (2015), 208--217
-
[4]
M. Farooq, A. Khan, B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput, 22 (2018), 3001--3010
-
[5]
M. Ferrero, R. Mazurek, A. Sant’Ana, On right chain semigroups, J. Algebra, 292 (2005), 574--584
-
[6]
S. H. Ghazavi, S. M. Anvariyeh, S. Mirvakili, $EL^2$–hyperstructures Derived from (Partially) Quasi Ordered Hyperstructures, Iran. J. Math. Sci. Inform., 10 (2015), 99--114
-
[7]
Z. Gu, X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384--397
-
[8]
Z. Gu, X.Tang, Characterizations of (strongly) ordered regular relations on ordered semihypergroups, J. Algebra, 465 (2016), 100--110
-
[9]
D. Heidari, B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73 (2011), 85--96
-
[10]
S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci., 11 (2017), 1083--1094
-
[11]
S. Omidi, B. Davvaz, J .M. Zhan, An investigation on ordered algebraic hyperstructures, Acta Math. Sin. (Engl. Ser.), 33 (2017), 1107--1124
-
[12]
J. Tang, B. Davvaz, Y. Luo, Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Systems, 29 (2015), 75--84
-
[13]
J. Tang, B. Davvaz, X.-Y. Xie, An investigation on hyper S-posets over ordered semihypergroups, Open Math., 15 (2017), 37--56
-
[14]
J. Tang, Y. Luo, X. Xie, A study on (strong) order-congruences in ordered semihypergroups, Turk. J. Math., 42 (2018), 1255--1271
-
[15]
J. Tang, X. Xie, An investigation on left hyperideals of ordered semihypergroups, J. Math. Res. Appl., 37 (2017), 419--434