Mersenne Lucas numbers and complete homogeneous symmetric functions
Volume 24, Issue 2, pp 127--139
http://dx.doi.org/10.22436/jmcs.024.02.04
Publication Date: January 21, 2021
Submission Date: September 20, 2020
Revision Date: December 13, 2020
Accteptance Date: December 27, 2020
-
1467
Downloads
-
2715
Views
Authors
Nabiha Saba
- LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria.
Ali Boussayoud
- LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria.
Kasi Viswanadh V. Kanuri
- 3669 Leatherwood Dr, Frisco, TX 75033, USA.
Abstract
In this paper, we first introduce new definition of Mersenne Lucas numbers
sequence as, for \(n\geq 2,\) \(m_{n}=3m_{n-1}-2m_{n-2}\) with the initial
conditions \(m_{0}=2\) and \(m_{1}=3\). Considering this sequence, we give
Binet's formula, generating function and symmetric function of Mersenne
Lucas numbers. By using the Binet's formula we obtain some well-known
identities such as Catalan's identity, Cassini's identity and d'Ocagne's
identity. After that, we give some new generating functions for products of \(%
\left( p,q\right) \)-numbers with Mersenne Lucas numbers at positive and
negative indice.
Share and Cite
ISRP Style
Nabiha Saba, Ali Boussayoud, Kasi Viswanadh V. Kanuri, Mersenne Lucas numbers and complete homogeneous symmetric functions, Journal of Mathematics and Computer Science, 24 (2022), no. 2, 127--139
AMA Style
Saba Nabiha, Boussayoud Ali, Kanuri Kasi Viswanadh V., Mersenne Lucas numbers and complete homogeneous symmetric functions. J Math Comput SCI-JM. (2022); 24(2):127--139
Chicago/Turabian Style
Saba, Nabiha, Boussayoud, Ali, Kanuri, Kasi Viswanadh V.. "Mersenne Lucas numbers and complete homogeneous symmetric functions." Journal of Mathematics and Computer Science, 24, no. 2 (2022): 127--139
Keywords
- Mersenne Lucas numbers
- \(\left(p,q\right) \)-numbers
- symmetric functions
- Binet's formula
- generating functions
MSC
References
-
[1]
A. Boussayoud, L'action de l'opérateur δk e-e2 sur la série+∞∑ n= 0 Sn (A) en 1 zn, Mohamed Seddik Ben Yahia Univ. (Doctoral dissertation), Jijel, Algeria (2017)
-
[2]
A. Boussayoud, A. Abderrezzak, Complete homogeneous symmetric functions and Hadamard product, Ars Comb., 144 (2019), 81--90
-
[3]
A. Boussayoud, M. Kerada, Symmetric and generating functions, Int. Electron. J. Pure Appl. Math., 7 (2014), 195--203
-
[4]
A. Boussayoud, M. Kerada, R. Sahali, W. Rouibah, Some applications on generating functions, J. Concr. Appl. Math., 12 (2014), 321--330
-
[5]
P. Catarino, H. Campos, P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37--53
-
[6]
H. H. Gulec, N. Taskara, On the (s, t)-Pell and (s, t)-Pell-Lucas sequences and their matrix representations, Appl. Math. Lett., 25 (2012), 1554--1559
-
[7]
T. Koshy, Z. Gao, Catalan numbers with Mersenne subscripts, Math. Sci., 38 (2013), 86--91
-
[8]
M. Merca, A generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math., 45 (2014), 75--89
-
[9]
C. Pomerance, On primitive divisors of Mersenne numbers, Acta Arith., 46 (1986), 355--367
-
[10]
N. Saba, A. Boussayoud, Complete homogeneous symmetric functions of Gauss Fibonacci polynomials and bivariate Pell polynomials, Open J. Math. Sci., 4 (2020), 179--185
-
[11]
N. Saba, A. Boussayoud, A. Abderrezzak, Complete homogeneous symmetric functions of third and second-order linear recurrence sequences, Electron. J. Math. Anal. Appl., 9 (2021), 226--242
-
[12]
N. Saba, A. Boussayoud, A. Abderrezzak, Symmetric and generating functions of generalized (p, q)-numbers, Kuwait J. Sci., (), (Accepted)
-
[13]
A. Suvarnamani, Some properties of (p, q)-Lucas number, Kyungpook Math. J., 56 (2016), 367--370
-
[14]
A. Suvarnamani, M. Tatong, Some properties of (p, q)-Fibonacci numbers, Sci. Tech. RMUTT J., 5 (2015), 17--21
-
[15]
S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Appl. Math. Sci., 9 (2015), 3467--3476